Skip to main content
Log in

Independence numbers of random subgraphs of distance graphs

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We consider the distance graph G(n, r, s), whose vertices can be identified with r-element subsets of the set {1, 2,..., n}, two arbitrary vertices being joined by an edge if and only if the cardinality of the intersection of the corresponding subsets is s. For s = 0, such graphs are known as Kneser graphs. These graphs are closely related to the Erdős–Ko–Rado problem and also play an important role in combinatorial geometry and coding theory. We study some properties of random subgraphs of G(n, r, s) in the Erdős–Rényi model, in which every edge occurs in the subgraph with some given probability p independently of the other edges. We find the asymptotics of the independence number of a random subgraph of G(n, r, s) for the case of constant r and s. The independence number of a random subgraph is Θ(log2 n) times as large as that of the graph G(n, r, s) itself for r ≤ 2s + 1, while for r > 2s + 1 one has asymptotic stability: the two independence numbers asymptotically coincide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Raigorodskii, “Cliques and cycles in distance graphs and graphs of diameters,” in Discrete Geometry and Algebraic Combinatorics, Contemp. Math. (Amer. Math. Soc., Providence, RI, 2014), Vol. 625, pp. 93–109.

    Google Scholar 

  2. A. M. Raigorodskii, “Coloring distance graphs and graphs of diameters,” in Thirty Essays on Geometric Graph Theory (Springer, New York, 2013), pp. 429–460.

    Chapter  Google Scholar 

  3. A. M. Raigorodskii, “Borsuk’s problem and the chromatic numbers of some metric spaces,” Uspekhi Mat. Nauk 56 1, 107–146 (2001) [RussianMath. Surveys 56 1, 103–139 (2001)].

    Article  MathSciNet  MATH  Google Scholar 

  4. A. M. Raigorodskii, “On the chromatic numbers of spheres in Euclidean spaces,” Dokl. Ross. Akad. Nauk 432 2, 174–177 (2010) [Dokl. Math. 81 3, 379–382 (2010)].

    MathSciNet  MATH  Google Scholar 

  5. A. M. Raigorodskii, “On the chromatic numbers of spheres in Rn,” Combinatorica 32 1, 111–123 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Balogh, A. Kostochka, and A. Raigorodskii, “Coloring some finite sets in Rn,” Discuss. Math. Graph Theory 33 1, 25–31 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Pach and P. K. Agarwal, Combinatorial Geometry (John Wiley and Sons, New York, 1995).

    Book  MATH  Google Scholar 

  8. L. A. Székely, “Erdős on unit distances and the Szemerédi–Trotter theorems,” in Paul Erdős and HisMathematics, II, Bolyai Soc. Math. Stud. (János BolyaiMath. Soc., Budapest, 2002), Vol. 11, pp. 649–666.

    Google Scholar 

  9. A. Soifer, The Mathematical Coloring Book. Mathematics of Coloring and the Colorful Life of Its Creators (Springer, New York, 2009).

    MATH  Google Scholar 

  10. V. Klee and S. Wagon, Old and New Unsolved Problems in Plane Geometry and Number Theory, in The DolcianiMath. Exp. (Math. Assoc. America, Washington, DC, 1991), Vol. 11.

    Google Scholar 

  11. V. Boltyanski, H. Martini, and P. S. Soltan, Excursions into Combinatorial Geometry, in Universitext (Springer-Verlag, Berlin, 1997).

    Book  MATH  Google Scholar 

  12. A. M. Raigorodskii, “Three lectures on the Borsuk partition problem,” in Surveys in Contemporary Mathematics, LondonMath. Soc. Lecture Note Ser. (Cambridge Univ. Press, Cambridge, 2008), Vol. 347, pp. 202–248.

    Google Scholar 

  13. A. M. Raigorodskii, “Around Borsuk’s hypothesis,” Sovrem. Mat. Fundam. Napravl. 23, 147–164 (2007) [J. Math. Sci. (New York) 154 4, 604–623 (2008)].

    MATH  Google Scholar 

  14. R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey Theory (JohnWiley and Sons, New York, 1990).

    MATH  Google Scholar 

  15. Z. Nagy, “A certain constructive estimate of the Ramsey number,” Mat. Lapok 23, 301–302 (1972).

    MathSciNet  Google Scholar 

  16. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. Parts I, II (North-Holland, Amsterdam–New York–Oxford, 1977; Radio i Svyaz’, Moscow, 1979).

    MATH  Google Scholar 

  17. L. Bassalygo, G. Cohen, and G. Zémor, “Codes with forbidden distances,” DiscreteMath. 213, 3–11 (2000).

    MathSciNet  MATH  Google Scholar 

  18. B. Bollobás, Random Graphs, in Cambridge Stud. in Adv. Math. (Cambridge Univ. Press, Cambridge, 2001), Vol. 73.

    Google Scholar 

  19. S. Janson, T. Luczak, and A. Rucinski, Random Graphs (Wiley, New York, 2000).

    Book  MATH  Google Scholar 

  20. V. F. Kolchin, Random Graphs (Fizmatlit, Moscow, 2000) [in Russian].

    MATH  Google Scholar 

  21. L. I. Bogolyubskii, A S. Gusev, M. M. Pyaderkin, and A. M. Raigorodskii, “Independence numbers and chromatic numbers of random subgraphs in some sequences of graphs,” Dokl. Ross. Akad. Nauk 457 4, 383–387 (2014) [Dokl. Math. 90 1, 462–465 (2014)].

    MathSciNet  MATH  Google Scholar 

  22. L. I. Bogolyubskii, A S. Gusev, M. M. Pyaderkin, and A. M. Raigorodskii, “Independence numbers and chromatic numbers of the random subgraphs of some distance graphs,” Mat. Sb. 206 10, 3–36 (2015) [Sb. Math. 206 10, 1340–1374 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  23. M. M. Pyaderkin, “Independence numbers of random subgraphs of a distance graph,” Mat. Zametki 99 2, 288–297 (2016) [Math. Notes 99 (1–2), 312–319 (2016)].

    Article  MathSciNet  Google Scholar 

  24. M. M. Pyaderkin, “On the stability of the Erdős–Ko–Rado theorem,” Dokl. Ross. Akad. Nauk 462 2, 144–147 (2015) [Dokl. Math. 91 3, 290–293 (2015)].

    MathSciNet  MATH  Google Scholar 

  25. B. Bollobás, B. P. Narayanan, and A. M. Raigorodskii, “On the stability of the Erdős–Ko–Rado theorem,” J. Combin. Theory Ser. A 137, 64–78 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. M. Raigorodskii, “Combinatorial geometry and coding theory,” Fundam. Inform. (2016) (in press).

    Google Scholar 

  27. P. Frankl and Z. Füredi, “Forbidding just one intersection,” J. Combin. Theory Ser. A 39 2, 160–176 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Matousek, Using the Borsuk–Ulam Theorem. Lectures on Topological Methods in Combinatorics and Geometry, in Universitext (Springer-Verlag, Berlin, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Pyaderkin.

Additional information

Original Russian Text © M. M. Pyaderkin, 2016, published in Matematicheskie Zametki, 2016, Vol. 99, No. 4, pp. 564–573.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyaderkin, M.M. Independence numbers of random subgraphs of distance graphs. Math Notes 99, 556–563 (2016). https://doi.org/10.1134/S0001434616030299

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434616030299

Keywords

Navigation