Skip to main content
Log in

Universal zero-one k-law

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The limit probabilities of first-order properties of a random graph in the Erdős–Rényi model G(n, n α), α ∈ (0, 1), are studied. For any positive integer k ≥ 4 and any rational number t/s ∈ (0, 1), an interval with right endpoint t/s is found in which the zero-one k-law holds (the zero-one k-law describes the behavior of the probabilities of first-order properties expressed by formulas of quantifier depth at most k).Moreover, it is proved that, for rational numbers t/s with numerator not exceeding 2, the logarithm of the length of this interval is of the same order of smallness (as n→∞) as that of the length of the maximal interval with right endpoint t/s in which the zero-one k-law holds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Zhukovskii and A. M. Raigorodskii, “Random graphs: Models and asymptotic characteristics,” UspekhiMat. Nauk 70 (1), 35–88 (2015) [RussianMath. Surveys 70 (1), 33-81 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Erdő s and A. Rényi, “On the evolution of random graphs,” Magyar Tud. Akad. Mat. Kutató Int. Közl. 5, 17–61 (1960).

    MathSciNet  Google Scholar 

  3. B. Bollobás, “Threshold functions for small subgraphs,” Math. Proc. Cambridge Philos. Soc. 90 (2), 197–206 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Janson, T. Łuczak, and A. Rucinski, Random Graphs (Wiley-Interscience, New York, 2000).

    Book  MATH  Google Scholar 

  5. B. Bollobás, Random Graphs, in Cambridge Stud. in Adv. Math. (Cambridge Univ. Press, Cambridge, 2001), Vol. 73.

    Google Scholar 

  6. V. F. Kolchin, Random Graphs, in Probability Theory and Mathematical Statistic (Fizmatlit, Moscow, 2000) [in Russian].

    Google Scholar 

  7. N. Alon and J. H. Spencer, The Probabilistic Method (Wiley-Interscience, New York, 2000; Binom, Moscow, 2007).

    Book  MATH  Google Scholar 

  8. A. M. Raigorodskii, Random GraphModels (MTsNMO, Moscow, 2011) [in Russian].

    Google Scholar 

  9. N. K. Vereshchagin and A. Shen', Languages And Calculi (MTsNMO, Moscow, 2000) [in Russian].

    Google Scholar 

  10. V. A. Uspenskii, N. K. Vereshchagin, and V. E. Plisko, An Introductory Course in Mathematical Logic (Fizmatlit, Moscow, 1997) [in Russian].

    Google Scholar 

  11. S. Shelah and J. Spencer, “Zero-one laws for sparse random graphs,” J. Amer. Math. Soc. 1 (1), 97–115 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  12. J. H. Spencer, The Strange Logic of Random Graphs, in Algorithms Combin. (Springer-Verlag, Berlin, 2001), Vol. 22.

    Google Scholar 

  13. M. Zhukovskii, “Zero-one k-law,” Discrete Math. 312 (10), 1670–1688 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. E. Zhukovskii, “Zero-One laws for first-order formulas with bounded quantifier depth,” Dokl.Ross. Akad. Nauk 436 (1), 14–18 (2011) [Dokl.Math. 83 (1),–11 (2011)].

  15. M. E. Zhukovskii, “Extension of the zero-one k-law,” Dokl. Ross. Akad. Nauk 454 (1), 23–26 (2014) [Dokl. Math. 89 (1), 16–19 (2014)].

    MathSciNet  MATH  Google Scholar 

  16. M. E. Zhukovskii, “The largest critical point in the zero-one k-law,” Mat. Sb. 206 (4), 13–34 (2015) [Sb. Math. 206 (4), 489–509 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  17. J. H. Spencer, “Infinite spectra in the first order theory of graphs,” Combinatorica 10 (1), 95–102 (1990).

  18. A. Ruciński and A. Vince, “Balanced graphs and the problem of subgraphs of a random graph,” Congr. Numer. 49, 181–190 (1985).

    MathSciNet  MATH  Google Scholar 

  19. A. Ruciński and A. Vince, “Strongly balanced graphs and randomgraphs,” J.Graph Theory 10 (2), 251–264 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  20. M. E. Zhukovskii, “On the zero-one 4-law for the Erdő s-Rényi random graphs,” Mat. Zametki 97 (2), 203–216 (2015) [Math. Notes 97 (1–2), 203–216 (2015)].

    Article  MathSciNet  Google Scholar 

  21. J. H. Spencer, “Counting extensions,” J.Combin. Theory Ser. A 55 (2), 247–255 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  22. J. H. Spencer and M. E. Zhukovskii, “Spectra for random graphs of fixed quantifier depth,” Discrete Math. (2015) (in press).

    Google Scholar 

  23. A. Ehrenfeucht, “An application of games to the completeness problem for formalized theories,” Fund.Math. 49, 129–141 (1961).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Zhukovskii.

Additional information

Original Russian Text © M. E. Zhukovskii, A. D. Matushkin, 2016, published in Matematicheskie Zametki, 2016, Vol. 99, No. 4, pp. 511–525.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovskii, M.E., Matushkin, A.D. Universal zero-one k-law. Math Notes 99, 511–523 (2016). https://doi.org/10.1134/S000143461603024X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143461603024X

Keywords

Navigation