Skip to main content
Log in

Classification of zeta functions of bielliptic surfaces over finite fields

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Let S be a bielliptic surface over a finite field, and let an elliptic curve B be the Albanese variety of S; then the zeta function of the surface S is equal to the zeta function of the direct product P1 × B. Therefore, the classification problem for the zeta functions of bielliptic surfaces is reduced to the existence problem for surfaces of a given type with a given Albanese curve. In the present paper, we complete this classification initiated in [1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yu. Rybakov, “Zeta functions of bi-elliptic surfaces over finite fields,” Mat. Zametki 83 2, 273–285 (2008) [Mat. Zametki 83 (1–2), 246–256 (2008)].

    Article  MathSciNet  Google Scholar 

  2. M. A. Tsfasman, “Nombre de points des surfaces sur un corps fini,” in Arithmetic, Geometry and Coding Theory (Walter de Gruyter, Berlin, 1996), pp. 209–224.

    Google Scholar 

  3. S. Rybakov, “Zeta functions of conic bundles and Del Pezzo surfaces of degree 4 over finite fields,” Mosc. Math. J. 5 4, 919–926 (2005).

    MathSciNet  MATH  Google Scholar 

  4. S. Rybakov, “Finite group subschemes of abelian varieties over finite fields,” Finite Fields Appl. 29, 132–150 (2014); arXiv: 1006. 5959.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Bombieri and D. Mumford, “Enriques’ classification of surfaces in char. p. II,” in Complex Analysis and Algebraic Geometry (Iwanami Shoten, Tokyo, 1977), pp. 23–42.

    Chapter  Google Scholar 

  6. M. Demazure, Lectures on p-Divisible Groups, in Lecture Notes in Math. (Springer-Verlag, Berlin, 1972), Vol. 302.

    Google Scholar 

  7. M. Deuring, “Die Typen der Multiplikatorenringe elliptischer Funktionenkörper,” Abh. Math. Sem. Univ. Hamburg 14 1, 197–272 (1941).

    Article  MathSciNet  MATH  Google Scholar 

  8. W. C. Waterhouse, “Abelian varieties over finite fields,” Ann. Sci. école. Norm. Sup. 2, 521–560 (1969).

    MathSciNet  MATH  Google Scholar 

  9. M. A. Tsfasman, “Group of points of an elliptic curve over a finite field,” in Theory of Numbers and Its Applications (Tbilisi, 1985), pp. 286–287.

    Google Scholar 

  10. S. G. Vladut, D. Yu. Nogin, and M. A. Tsfasman, Algebraic Geometry Codes. Basic Notions (MTsNMO, Moscow, 2003; AMS, Providence, RI, 2007).

    MATH  Google Scholar 

  11. L. Badescu, Algebraic Surfaces, in Universitext (Springer-Verlag, New York, 2001).

    Google Scholar 

  12. D. Mumford, Abelian Varieties (Oxford University Press, London, 1970; Mir, Moscow, 1971).

    MATH  Google Scholar 

  13. R. Hartshorne, Algebraic Geometry (Springer-Verlag, New York–Heidelberg, 1977;Mir, Moscow, 1981).

    MATH  Google Scholar 

  14. J. Milne, Abelian Varieties (2008), http://www. jmilne. org/math/CourseNotes/avhtml.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Rybakov.

Additional information

Original Russian Text © S. Yu. Rybakov, 2016, published in Matematicheskie Zametki, 2016, Vol. 99, No. 3, pp. 384–394.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybakov, S.Y. Classification of zeta functions of bielliptic surfaces over finite fields. Math Notes 99, 397–405 (2016). https://doi.org/10.1134/S0001434616030081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434616030081

Keywords

Navigation