Case of less than two degrees of freedom, negative pressure, and the Fermi—Dirac distribution for a hard liquid

Abstract

The notion of ideal liquid for the number of degrees of freedom less than 2, i.e., γ < 0, is introduced. The values of the pressure P and of the compressibility factor Z on the spinodal in the negative pressure region for the van der Waals equation determine the value of γ, γ(T) < 0, for μ = 0. For \(T \leqslant \frac{{{3^3}}}{{{2^5}}}{T_c}\), a relationship with the van der Waals equation is established.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V. P. Maslov, Perturbation Theory and Asymptotic Methods (Izd. Moskov. Univ., Moscow, 1965; Dunod, Paris, 1972) [in Russian and French].

    Google Scholar 

  2. 2.

    B. Ya. Frenkel, Yakov Il’ich Frenkel (Nauka, Moscow–Leningrad, 1966) [in Russian].

    Google Scholar 

  3. 3.

    L. D. Landau and E. M. Lifshits, Statistical Physics (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  4. 4.

    P. Erdős and J. Lehner, “The distribution of the number of summands in the partitions of a positive integer,” Duke Math. J. 8 (2), 335–345 (1941).

    MathSciNet  Article  Google Scholar 

  5. 5.

    V. P. Maslov and V. E. Nazaikinskii, “On the distribution of integer random variables related by a certain linear inequality: I,” Mat. Zametki 83 (1–2), 232–263 (2008) [Math. Notes 83 (1–2), 211–237 (2008)].

    MathSciNet  Article  Google Scholar 

  6. 6.

    V. P. Maslov and V. E. Nazaikinskii, “On the distribution of integer random variables related by a certain linear inequality: II,” Mat. Zametki 83 (3), 381–401 (2008) [Math. Notes 83 (3–4), 345–363 (2008)].

    MathSciNet  Article  Google Scholar 

  7. 7.

    A. M. Vershik, “Statistical mechanics of combinatorial partitions, and their limit shapes,” Funktsional. Anal. i Prilozhen. 30 (2), 19–39 (1996) [Functional Anal. Appl. 30 (2), 90–105 (1996)].

    MathSciNet  Article  Google Scholar 

  8. 8.

    V. P. Maslov, “Old mathematical errors in statistical physics,” Russ. J. Math. Phys. 20 (2), 214–229 (2013).

    MATH  MathSciNet  Article  Google Scholar 

  9. 9.

    V. P. Maslov, “Distribution corresponding to classical thermodynamics,” Phys.Wave Phenom. 23 (2), 81–95 (2015).

    Article  Google Scholar 

  10. 10.

    V. P. Maslov, “Undistinguishing statistics of objectively distinguishable objects: Thermodynamics and superfluidity of classical gas,” Math. Notes 94 (5–6), 722–813 (2013).

    MATH  MathSciNet  Article  Google Scholar 

  11. 11.

    A. I. Burshtein, Molecular Physics (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  12. 12.

    V.P Maslov, “Gas–amorphous solid and liquid–amorphous solid phase transitions. Introduction of negative mass and pressure from the mathematical viewpoint,” Math. Notes 97 (3–4), 423–430 (2015).

    Article  Google Scholar 

  13. 13.

    I. A. Kvasnikov, Thermodynamics and Statistical Physics: Theory of Equilibrium Systems (URSS, Moscow, 2002), Vol. 2 [in Russian].

    Google Scholar 

  14. 14.

    V. E. Nazaikinskii, “On the asymptotics of the number of states for the Bose–Maslov gas,” Math. Notes 91 (5–6), 816–823 (2012).

    MATH  MathSciNet  Article  Google Scholar 

  15. 15.

    V. P. Maslov, “Threshold levels in economics and time series,” Math. Notes 85 (3–4), 305–321 (2009).

    MATH  Article  Google Scholar 

  16. 16.

    V. P. Maslov, Threshold Levels in Economics, arXiv:0903.4783v2 [q-fin. ST] 3 Apr 2009.

    Google Scholar 

  17. 17.

    T. Tate, “A spectral analogue of the Meinardus theorem on asymptotics of the number of partitions,” Asymptot. Anal. 67 (1–2), 101–123 (2010).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. P. Maslov.

Additional information

The article was submitted by the author for the English version of the journal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maslov, V.P. Case of less than two degrees of freedom, negative pressure, and the Fermi—Dirac distribution for a hard liquid. Math Notes 98, 138–157 (2015). https://doi.org/10.1134/S0001434615070123

Download citation

Keywords

  • number of degrees of freedom
  • negative pressure
  • Fermi—Dirac distribution
  • hard liquid