Skip to main content
Log in

On local solvability and blow-up of solutions of an abstract nonlinear Volterra integral equation

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

A theorem on noncontinuable solutions is proved for abstract Volterra integral equations with operator-valued kernels (continuous and polar). It is shown that if there is no global solvability, then the C-norm of the solution is unbounded but does not tend to infinity in general. An example of Volterra equations whose noncontinuable solutions are unbounded but not infinitely large is constructed. It is shown that the theorems on noncontinuable solutions of the Cauchy problem for abstract equations of the first and nth kind (with a linear leading part) are special cases of the theorems proved in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Mitidieri and S. I. Pokhozhaev, “A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities,” in Trudy Mat. Inst. Steklov (Nauka, Moscow, 2001), Vol. 234, pp. 3–383 [Proc. Steklov Inst.Math. 234 (3), 1–362 (2001)].

    Google Scholar 

  2. A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Peaking Modes in Problems for Quasilinear Parabolic Equations (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  3. H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put = -Au + F(u),” Arch. Ration. Mech. Anal. 51, 371–386 (1973).

    Article  MATH  Google Scholar 

  4. V. K. Kalantarov and O. A. Ladyzhenskaya, “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types,” in Boundary-Value Problems of Mathematical Physics and Related Problems of Theory of Functions. 10, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova (LOMI) (Izd. “Nauka”, Leningrad. Branch, Leningrad, 1977), Vol. 69, pp. 77–102 [J. Sov. Math. 10 (1), 53–70 (1978)].

    Google Scholar 

  5. V. A. Galaktionov and J. A. Vázqez, “The problem of blow-up in nonlinear parabolic equations,” Discrete Contin. Dyn. Syst. 8(2), 399–433 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  6. Chi-Cheung Poon, “Blow-up of a degenerate non-linear heat equation,” Taiwanese J. Math. 15(3), 1201–1225 (2011).

    MATH  MathSciNet  Google Scholar 

  7. M. O. Korpusov, “Blow-up of solutions of the three-dimensional Rosenau-Burgers equation,” Teoret. Mat. Fiz. 170(3), 342–349 (2012) [Theoret. and Math. Phys. 170 (3), 280–286 (2012)].

    Article  MathSciNet  Google Scholar 

  8. M. O. Korpusov, “On the blow-up of solutions of the Benjamin-Bona-Mahony-Burgers and Rosenau-Burgers equations,” Nonlinear Anal.: Theory Methods Appl. 75(4), 1737–1743 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Ishida and T. Yokota, “Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type,” Discrete Contin. Dyn. Syst. Ser. B 18, 2569–2596 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  10. F. Hartman, Ordinary Differential Equations (Wiley, New York, 1964; Mir, Moscow, 1970).

    MATH  Google Scholar 

  11. H. Cartan, Differential calculus. Differential forms (Paris, Hermann, 1967; Mir, Moscow, 1971).

    Google Scholar 

  12. G. Gripenberg, S.-O. Londen, and O. Staffans, Volterra Integral and Functional Equations, in Encyclopedia Math. Appl. (Cambridge Univ. Press, Cambridge, 1990), Vol. 34.

    Book  MATH  Google Scholar 

  13. N. A. Burton, Volterra Integral and Differential Equations (Elsevier Science, Amsterdam, 2005).

    MATH  Google Scholar 

  14. H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, in Cambridge Monogr. Appl. Comput. Math. (Cambridge Univ. Press, Cambridge, 2004), Vol. 15.

    Book  MATH  Google Scholar 

  15. W. Mydlarczyk, “A condition for finite blow-up time for a Volterra integral equation,” J. Math. Anal. Appls. 181(1), 248–253 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  16. W. Mydlarczyk, “The blow-up solutions of integral equations,” Colloq. Math. 79(1), 147–156 (1999).

    MATH  MathSciNet  Google Scholar 

  17. P. J. Bushell and W. Okrasinski, “On the maximal interval of existence for solutions to some non-linear Volterra integral equations with convolutional kernel,” Bull. London Math. Soc. 28(1), 59–65 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  18. C. A. Roberts, “Characterizing the blow-up solutions for nonlinear Volterra integral equations,” Nonlinear Anal.: Theory Methods Appl. 30(2), 923–933 (1997).

    Article  MATH  Google Scholar 

  19. M. R. Arias and R. Benítez, “Properties of solutions for nonlinear Volterra integral equations,” Discrete Contin. Dyn. Syst., 42–47 (2003).

    Google Scholar 

  20. T. Małolepszy and W. Okrasiński, “Conditions for blow-up of solutions of some nonlinear Volterra integral equations,” J. Comput. Appl. Math. 205(2), 744–750 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  21. F. Calabrò and G. Capobianco, “Blowing up behavior for a class of nonlinear VIEs connected with parabolic PDEs,” J. Comput. Appl. Math. 228(2), 580–588 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  22. T. Małolepszy and M. Niedziela, “A note on blow-up solutions to some nonlinear Volterra integral equations,” Appl. Math. Comput. 218(11), 6401–6406 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  23. D. N. Sidorov and N. A. Sidorov, “Convex majorants method in the theory of nonlinear Volterra equations,” Banach J. Math. Anal. 6(1), 1–10 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  24. C. A. Roberts, “Analysis of explosion for nonlinear Volterra equations,” J. Comput. Appl. Math. 97(1–2), 153–166 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  25. C. A. Roberts, “Recent results on blow-up and quenching for nonlinear Volterra equations,” J. Comput. Appl. Math. 205(2), 736–743 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  26. R. K. Miller, Nonlinear Volterra Integral Equations (W. A. Benjamin, Menlo Park, CA, 1971).

    MATH  Google Scholar 

  27. Z. Artstein, “Continuous dependence of solutions of Volterra integral equations,” SIAM Jour.Math. Anal. 6, 446–456 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  28. T. Herdman, “Behavior of maximally defined solutions of a nonlinear Volterra equation,” Proc. Amer. Math. Soc. 67(2), 297–302 (1977).

    Article  MathSciNet  Google Scholar 

  29. A. D. Myshkis, “General theory of differential equations with a retarded argument,” Uspekhi Mat. Nauk 4(5), 99–141 (1949).

    MATH  Google Scholar 

  30. T. L. Herdman, “A note on noncontinuable solution of a delay differential equation,” in Differential Equations (Academic Press, New York, 1980), pp. 187–192.

    Google Scholar 

  31. L. A. Lyusternik and V. I. Sobolev, Elements of Functional Analysis (Nauka, Moscow, 1965) [in Russian].

    MATH  Google Scholar 

  32. V. Komornik, P. Martinez, M. Pierre, and J. Vanconsenoble, “‘Blow-up’ of bounded solutions of differential equations,” Acta Sci.Math. (Szeged) 69(3–4), 651–657 (2003).

    MATH  MathSciNet  Google Scholar 

  33. V. I. Bogachev, O. G. Smolyanov, and V. I. Sobolev, Topological Vector Spaces and Their Applications (RKhD, Moscow-Izhevsk, 2012) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Panin.

Additional information

Original Russian Text © A. A. Panin, 2015, published in Matematicheskie Zametki, 2015, Vol. 97, No. 6, pp. 884–903.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panin, A.A. On local solvability and blow-up of solutions of an abstract nonlinear Volterra integral equation. Math Notes 97, 892–908 (2015). https://doi.org/10.1134/S0001434615050247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434615050247

Keywords

Navigation