Skip to main content
Log in

Trigonometric sums over one-dimensional quasilattices of arbitrary codimension

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

A new class of one-dimensional quasilattices parametrized by the translations of the torus is introduced. For this class, parameter-dependent trigonometric sums over points of quasilattice are considered. Nontrivial estimates of the trigonometric sums under consideration are obtained. For a number of trigonometric sums of special form, asymptotic formulas are derived. It is proved that the distribution of points of quasilattices is uniform modulo h for almost all h. Earlier similar results were obtained in the particular case of quasilattices parametrized by the rotations of the circle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Krasil’shchikov and A. V. Shutov, “One-dimensional quasicrystals: Approximation by periodic structures and embedding of lattices,” in Newest Problems of Field Theory (Izd. Kazan Univ., Kazan, 2006), Vol. 5, pp. 145–154 [in Russian].

    Google Scholar 

  2. V. V. Krasil’shchikov and A. V. Shutov, “Some questions of the embedding of lattices in one-dimensional quasiperiodic tilings,” Vestnik SamGU, Estestvennonauchn. Ser., No. 7 (57), 84–91 (2007).

    Google Scholar 

  3. V. V. Krasil’shchikov and A. V. Shutov, “One-dimensional quasiperiodic tilings admitting progressions enclosure,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 7, 3–9 (2009) [Russian Math. (Iz. VUZ) 53 (7), 1–6 (2009)].

    Google Scholar 

  4. V. V. Krasil’shchikov and A. V. Shutov, “Distribution of points of one-dimensional quasilattices with respect to a variable module,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 3, 17–23 (2012) [Russian Math. (Iz. VUZ) 56 (3), 14–19 (2012)].

    Google Scholar 

  5. V. V. Krasil’shchikov, “The spectrum of one-dimensional quasilattices,” Sibirsk. Mat. Zh. 51(1), 68–73 (2010) [Siberian Math. J. 51 (1), 53–56 (2010)].

    MathSciNet  Google Scholar 

  6. A. V. Shutov, “The arithmetic and geometry of one-dimensional quasilattices,” Chebyshevskii Sb. 11(1), 255–262 (2010).

    MATH  MathSciNet  Google Scholar 

  7. A. V. Shutov, “Trigonometric sums over one-dimensional quasilattices,” Chebyshevskii Sb. 13(2), 136–148 (2012).

    MATH  MathSciNet  Google Scholar 

  8. I.M. Vinogradov, The Method of Trigonometric Sums in the Theory of Numbers (Nauka, Moscow, 1971; Dover Publications, 2004).

    Google Scholar 

  9. C. Janot, Quasicrystals: A Primer, in Oxford Class. Texts Phys. Sci. (Clarendon Press, Oxford, 1994).

    Google Scholar 

  10. V. G. Zhuravlev, “Multidimensional Hecke theorem on the distribution of fractional parts,” Algebra Anal. 24(1), 95–130 (2012) [St. Petersburg Math. J. 24 (1), 71–97 (2013)].

    MathSciNet  Google Scholar 

  11. V. Baladi, D. Rockmore, N. Tongring, and C. Tresser, “Renormalization on the n-dimensional torus,” Nonlinearity 5(5), 1111–1136 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Rauzy, “Nombres algébriques et substitutions,” Bull. Soc. Math. France 110(2), 147–178 (1982).

    MATH  MathSciNet  Google Scholar 

  13. A. V. Shutov, “The two-dimensional Hecke-Kesten problem,” Chebyshevskii Sb. 12(2), 151–162 (2011).

    MATH  MathSciNet  Google Scholar 

  14. A. V. Shutov, “On a family of the two-dimensional bounded remainder sets,” Chebyshevskii Sb. 12(4), 264–271 (2011).

    MATH  MathSciNet  Google Scholar 

  15. N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics, and Combinatorics, in Lecture Notes in Math. (Springer-Verlag, Berlin, 2001), Vol. 1794.

    Google Scholar 

  16. V.G. Zhuravlev, “Bounded remainder polyhedra,” in Trudy Mat. Inst. Steklov, Sovrem. Probl. Mat. (MIAN, Moscow, 2012), Vol. 16, pp. 82–102 [Proc. Steklov Inst. Math. 280, Suppl. 2, S71–S90 (2013)].

    Google Scholar 

  17. A. V. Shutov, “Multidimensional generalizations of sums of fractional parts and their number-theoretic applications,” Chebyshevskii Sb. 14(1), 104–118 (2013).

    MathSciNet  Google Scholar 

  18. H. Weyl, “Über die Gibbs’sche Erscheinung und verwandte Konvergenzph änomene,” Palermo Rend. 30, 377–407 (1910).

    Article  MATH  Google Scholar 

  19. C. Godrèche and C. Oguey, “Construction of average lattices for quasiperiodic structures by the section method,” J. Phys. France 51, 21–37 (1990).

    Article  Google Scholar 

  20. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences (Interscience, New York-London-Sydney, 1974; Nauka, Moscow, 1985).

    MATH  Google Scholar 

  21. V. G. Zhuravlev, “Fibonacci-even numbers: Binary additive problem, distribution over progressions, and spectrum,” Algebra Anal. 20(3), 18–46 (2008) [St. Petersburg Math. J. 20 (3), 339–360 (2009)].

    MathSciNet  Google Scholar 

  22. M. Drmota and R. F. Tichy, Sequences, Discrepancies, and Applications, in Lecture Notes in Math. (Springer-Verlag, Berlin, 1997), Vol. 1651.

    MATH  Google Scholar 

  23. S. A. Stepanov, Arithmetic of Algebraic Curves (Nauka, Moscow, 1991; Springer-Verlag, 1995).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shutov.

Additional information

Original Russian Text © A. V. Shutov, 2015, published in Matematicheskie Zametki, 2015, Vol. 97, No. 5, pp. 781–793.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shutov, A.V. Trigonometric sums over one-dimensional quasilattices of arbitrary codimension. Math Notes 97, 791–802 (2015). https://doi.org/10.1134/S0001434615050144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434615050144

Keywords

Navigation