Skip to main content
Log in

Arithmetic complexity of certain linear transformations

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We obtain order-sharp quadratic and slightly higher estimates of the computational complexity of certain linear transformations (binomial, Stirling, Lah, Gauss, Serpiński, Sylvester) in the basis {x + y} ⋃ {ax : |a| ≤ C} consisting of the operations of addition and inner multiplication by a bounded constant as well as upper bounds O(n log n) for the computational complexity in the basis {ax + by : a, b ∈ ℝ} consisting of all linear functions. Lower bounds of the form Ω(n log n) are obtained for the basis consisting of all monotone linear functions {ax + by : a, b > 0}. For the finite arithmetic basis B +,*,/ = {x ± y, xy, 1/x, 1} and for the bases {x ± y} ⋃ {nx : n ∈ ℕ} ⋃ {x/n : n ∈ ℕ} and B +,* = {x + y, xy, −1}, estimates O(n log n log log n) are obtained in certain cases. In the case of a field of characteristic p, computations in the basis {x + y mod p} are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Riordan, An Introduction to Combinatorial Analysis (J. Wiley, New York, 1958; Inostr. Lit., Moscow, 1963).

    MATH  Google Scholar 

  2. I. P. Goulden and D. M. Jackson, Combinatorial Enumeration (John Wiley, New York, 1983; Nauka, Moscow, 1990).

    MATH  Google Scholar 

  3. Donald E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms (Addison-Wesley, Reading, Mass., 1969; Mir, Moscow, 2000).

  4. S. B. Gashkov and V. V. Kochergin, “On addition chains of vectors, gate circuits and the complexity of computations of powers,” Metody Diskretn. Anal. 52, 22–40 (1992) [Sib. Adv. Math. 4 (4), 1–16 (1994)].

    MATH  MathSciNet  Google Scholar 

  5. J. Morgenstern, “Note on lower bound for the linear complexity of the fast Fourier transform,” J. Assoc. Comput. Mach. 20 (2), 305–306 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  6. D. K. Faddeev and I. S. Sominskii, Problems of Higher Algebra (Lan’, St. Petersburg, 1999) [in Russian].

    Google Scholar 

  7. E. Yu. Smirnov, Young Diagrams, Planar Partitions, and Alternating-Sign Matrices (MTsNMO, Moscow, 2014) [in Russian].

    Google Scholar 

  8. D. G. Cantor and E. Kaltofen, “On fast multiplication of polynomials over arbitrary algebras,” Acta Inform. 28 (7), 693–701 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Schönhage, “Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2,” Acta Inform. 7 (4), 395–398 (1977).

    Article  MATH  Google Scholar 

  10. J. von zur Gathen and J. Gerhard, Modern Computer Algebra (Cambridge Univ. Press, Cambridge, 1999).

    MATH  Google Scholar 

  11. A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algorithms (Addison-Wesley, Reading, 1975; Mir, Moscow, 1979).

    Google Scholar 

  12. J. W. Cooley and J. W. Tukey, “An algorithm for the machine compution of complex Fourier series,” Math. Comp. 19, 297–301 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  13. S. B. Gashkov and V. N. Chubarikov, Arithmetic. Algorithms. Complexity of Computations (Vyassh. Shkola, Moscow, 2000) [in Russian].

    Google Scholar 

  14. J. Boyar and M. C. Find, Cancellation-Free Circuits: An Approach for Proving Superlinear Lower Bounds for Linear Boolean Operators, arXiv: 1207.5321.

  15. D. Yu. Grigor’ev, “Lower bounds in the algebraic computational complexity,” in Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, Vol. 118: Theory of Computational Complexity. I (Izd. “Nauka (Leningradsk. Otd.), Leningrad, 1982), pp. 25–82 [in Russian].

    MATH  MathSciNet  Google Scholar 

  16. D. Yu. Grigor’ev, “Additive complexity in directed computations,” Theoret. Comput. Sci. 19 (1), 39–67 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  17. A. V. Chashkin, “On the complexity of Booleanmatrices, graphs, and the Boolean functions corresponding to them,” Discrete Math. Appl. 4, No. 3, 229–257 (1994); translation from Diskretn. Mat. 6, No. 2, 43-73 (1994). Diskret.Mat. 6 (2), 43–73 (1994) [Discrete Math. Appl. 6 (2), 43–73 (1994)].

    Article  MathSciNet  Google Scholar 

  18. N. Alon, M. Karchmer, and A. Wigderson, “Linear circuits over GF(2),” SIAM J. Comput. 19 (6), 1064–1067 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  19. S. B. Gashkov and I. B. Gashkov, “On the complexity of compution of differentials and gradients,” Diskret. Mat. 17 (3), 45–67 (2005) [Discrete Math. Appl. 15 (4), 327–350 (2005)].

    Article  MathSciNet  Google Scholar 

  20. I. P. Stephensen, Theory of Interpolation (ONTI, Moscow, 1935) [Russian transl.].

    Google Scholar 

  21. J. Riordan, Combinatorial Identities (Krieger Publ., Huntington, NY, 1979; Nauka, Moscow, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Gashkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gashkov, S.B. Arithmetic complexity of certain linear transformations. Math Notes 97, 531–555 (2015). https://doi.org/10.1134/S0001434615030256

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434615030256

Keywords

Navigation