Skip to main content
Log in

New upper bound for the chromatic number of a random subgraph of a distance graph

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

This paper is related to the classical Hadwiger-Nelson problem dealing with the chromatic numbers of distance graphs in ℝn. We consider the class consisting of the graphs G(n, 2s + 1, s) = (V (n, 2s + 1), E(n, 2s + 1, s)) defined as follows:

$V(n,2s + 1) = \{ x = (x_1 ,x_2 ,...,x_n ):x_i \in \{ 0,1\} ,x_1 + x_2 + \cdots + x_n = 2s + 1\} ,E(n,2s + 1,s) = \{ \{ x,y\} :(x,y) = s\} ,$

where (x, y) stands for the inner product. We study the random graph G(G(n, 2s + 1, s), p) each of whose edges is taken from the set E(n, 2s+1, s) with probability p independently of the other edges. We prove a new bound for the chromatic number of such a graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Brass, W. Moser, and J. Pach, Research Problems in Discrete Geometry (Springer, New York, 2005).

    MATH  Google Scholar 

  2. J. Balogh, A. Kostochka, and A. Raigorodskii, “Coloring some finite sets in ℝn,” Discuss. Math. Graph Theory 33 (1), 25–31 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  3. A. M. Raigorodskii, “Borsuk’s problem and the chromatic numbers of some metric spaces,” Uspekhi Mat. Nauk 56 (1), 107–146 (2001) [Russian Math. Surveys] 56 (1), 103–139 (2001).

    Article  MathSciNet  Google Scholar 

  4. A. M. Raigorodskii, “Coloring distance graphs and graphs of diameters,” in Thirty Essays on Geometric Graph Theory (Springer, New York, 2013), pp. 429–460.

    Chapter  Google Scholar 

  5. J. Pach and P. K. Agarwal, Combinatorial Geometry (John Wiley, New York, 1995).

    Book  MATH  Google Scholar 

  6. A. M. Raigorodskii, “The problems of Borsuk and Grunbaum on lattice polytopes,” Izv. Ross. Akad. Nauk Ser. Mat. 69 (3), 81–108 (2005) [Russian Acad. Sci. Izv.Math. 69 (3), 513–537 (2005)].

    Article  MathSciNet  Google Scholar 

  7. A. M. Raigorodskii, “The Erdős–Hadwiger problem and the chromatic numbers of finite geometric graphs,” Mat. Sb. 196 (1), 123–156 (2005) [Russian Acad. Sci. Sb. Math. 196 (1), 115–146 (2005)].

    Article  MathSciNet  Google Scholar 

  8. L. A. Székely, “Erdös on unit distances and the Szemerédi–Trotter theorems,” in Paul Erdoös and his Mathematics, Bolyai Soc. Math. Stud. (János Bolyai Math. Soc., Budapest, 2002), Vol. 11, pp. 649–666.

    Google Scholar 

  9. A. M. Raigorodskii, “On the chromatic numbers of spheres in ℝn,” Combinatorica 32 (1), 111–123 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  10. E. I. Ponomarenko and A.M. Raigorodskii, “An improvement of the Frankl–Wilson theorem on the number of edges in a hypergraph with forbidden intersection of edges,” Dokl. Ross. Akad. Nauk 454 (3), 268–269 (2014) [Russian Acad. Sci. Dokl. Math. 89 (1), 59–60 (2014)].

    MathSciNet  Google Scholar 

  11. E. I. Ponomarenko and A. M. Raigorodskii, “New estimates in the problem of the number of edges in a hypergraph with forbidden intersections,” Problemy Peredachi Informatsii 49 (4), 98–104 (2013) [Problems Inform. Transmission 49 (4), 384–390 (2013)].

    MathSciNet  Google Scholar 

  12. A. Soifer, The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of its Creators (Springer, New York, 2009).

    Google Scholar 

  13. A. M. Raigorodskii, “The Borsuk problem for (0, 1)-polytopes and cross polytopes,” Dokl. Ross. Akad. Nauk 371 (5), 600–603 (2000) [Russian Acad. Sci. Dokl. Math. 61 (2), 256–259 (2002)].

    MathSciNet  Google Scholar 

  14. A. M. Raigorodskii, “The Borsuk problem for (0, 1)-polytopes and cross polytopes,” Dokl. Ross. Akad. Nauk 384 (5), 593–597 (2002) [Russian Acad. Sci. Dokl.Math. 65 (3), 413–416 (2002)].

    MathSciNet  Google Scholar 

  15. V. Klee and S. Wagon, Old and New Unsolved Problems in Plane Geometry and Number Theory, in DolcianiMath. Exp. (Math. Assoc. America, Washington DC, 1991), Vol. 11.

  16. A. M. Raigorodskii, “The problem of Borsuk, Hadwiger, and Grünbaum for some classes of polytopes and graphs,” Dokl. Ross. Akad. Nauk 388 (6), 738–742 (2003) [Russian Acad. Sci. Dokl. Math. 67 (1), 85–89 (2003)].

    MathSciNet  Google Scholar 

  17. A. M. Raigorodskii and K. A. Mikhailov, “On the Ramsey numbers for complete distance graphs with vertices in {0, 1}n,” Mat. Sb. 200 (12), 63–80 (2009) [Russian Acad. Sci. Sb. Math. 200 (12), 1789–1806 (2009)].

    Article  MathSciNet  Google Scholar 

  18. F. J.MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes (North-Holland, Amsterdam, 1978; Radio i Svyaz’, Moscow, 1979).

    Google Scholar 

  19. V. Rödl, “On a packing and covering problem,” European J. Combin. 6 (1), 69–78 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  20. L. Bassalygo, G. Cohen, and G. Zémor, “Codes with forbidden distances,” Discrete Math. 213 (1–3), 3–11 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Erdös and A. Rényi, “On random graphs. I,” Publ.Math. Debrecen 6, 290–297 (1959).

    MATH  Google Scholar 

  22. A. M. Raigorodskii, Models of Random Graphs (MTsNMO, Moscow, 2011) [in Russian].

    Google Scholar 

  23. B. Bollobás, Random Graphs (Cambridge University Press, 2001).

    Book  MATH  Google Scholar 

  24. V. F. Kolchin, Random Graphs, in Probability Theory and Mathematical Statistics (Fizmatlit, Moscow, 2000) [in Russian].

    Google Scholar 

  25. S. Janson, T. Łuczak, and A. Ruciński, Random Graphs (Wiley, New York, 2000).

    Book  MATH  Google Scholar 

  26. L. I. Bogolyubskii, A. S. Gusev, M. M. Pyaderkin, and A. M. Raigorodskii, “Independence numbers and chromatic numbers of random subgraphs in some sequences of graphs,” Dokl. Ross. Akad. Nauk 457 (4), 383–387 (2014).

    Google Scholar 

  27. L. I. Bogolyubskii, A. S. Gusev, M. M. Pyaderkin, and A. M. Raigorodskii, “Independence numbers and chromatic numbers of random subgraphs of some distance graphs,” Mat. Sb. (in press).

  28. A. B. Kupavskii, “On random subgraphs of Kneser graph,” J. Combin. Theory. Ser. A (in press).

  29. B. Bollobás, B. P. Narayanan, and A. M. Raigorodskii, “On the stability of the Erdős–Ko–Rado theorem,” J. Combin. Theory. Ser. A (in press).

  30. V. E. Tarakanov, Combinatorial Problems and (0, 1)-Matrices (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  31. A. F. Sidorenko, “What we know and what we do not know about Turán numbers,” Graphs Combin. 11 (2), 179–199 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  32. A. M. Raigorodskii, Systems of Common Representatives in Combinatorics and Their Applications in Geometry (MTsNMO, Moscow, 2009) [in Russian].

    Google Scholar 

  33. P. Turán, “Egy gráfelmèleti szélsöértekfeladatrol,” Mat. és Fiz. Lapok 48 (3), 436–452 (1941).

    Google Scholar 

  34. B. Bollobás, “The chromatic number of random graphs,” Combinatorica 8 (1), 49–55 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  35. T. Łuczak, “The chromatic number of random graphs,” Combinatorica 11 (1), 45–54 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  36. Zs. Baranyai, “On the factorization of the complete uniform hypergraph,” in Infinite and Finite Sets, Vol. 1 (North-Holland, Amsterdam, 1975), pp. 91–108.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Gusev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, A.S. New upper bound for the chromatic number of a random subgraph of a distance graph. Math Notes 97, 326–332 (2015). https://doi.org/10.1134/S0001434615030037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434615030037

Keywords

Navigation