Abstract
We describe the action of inversion on given Weierstrass representations for surfaces and show that the Moutard transformation of two-dimensional Dirac operators maps the potential (the Weierstrass representation) of a surface S to the potential of a surface \(\tilde S\) obtained from S by inversion.
References
D. Yu, Q. P. Liu, and Sh. Wang, “Darboux transformation for the modified Veselov-Novikov equation,” J. Phys. A 35(16), 3779–3785 (2002).
B. G. Konopelchenko, “Induced surfaces and their integrable dynamics,” Stud. Appl. Math. 96, 9–51 (1996).
I. A. Taimanov, “Modified Novikov-Veselov equation and differential geometry of surfaces,” in Solitons, Geometry, and Topology: On the Crossroads, Amer. Math. Soc. Transl. Ser. 2 (Amer. Math. Soc., Providence, RI, 1997), Vol. 179, pp. 133–151.
I. A. Taimanov, “Two-dimensional Dirac operator and the theory of surfaces,” Uspekhi Mat. Nauk 61(1), 85–164 (2006) [Russian Math. Surveys 61 (1), 79–159 (2006)].
I. A. Taimanov, “The Weierstrass representation of spheres in ℝ3, the Willmore numbers, and soliton spheres,” in Trudy Mat. Inst. Steklov Vol. 225: Solitons, Geometry, and Topology: On the Crossroads (Nauka, Moscow, 1999), pp. 339–361 [Proc. Steklov Inst. Math. 225, 322–343 (1999)].
L. V. Bogdanov, “Veselov-Novikov equation as a natural two-dimensional generalization of the Korteweg-de Vries equation,” Teoret. Mat. Fiz. 70(2), 309–314 (1987) [Theoret. and Math. Phys. 70 (2), 219–223 (1987)].
I. A. Taimanov, “The Weierstrass representation of closed surfaces in ℝ3,” Funktsional. Anal. Prilozhen. 32(4), 49–62 (1998) [Functional Anal. Appl. 32 (4), 258–267 (1998)].
B.A. Dubrovin, I. M. Krichever, and S.P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces,” Dokl. Akad. Nauk SSSR 229(1), 15–18 (1976) [Soviet Math. Dokl. 17, 947–951 (1977)].
P. G. Grinevich and M. U. Schmidt, “Conformal invariant functionals of immersions ofri into ℝ3,” J. Geom. Phys. 26(1–2), 51–78 (1997).
P. G. Grinevich and I. A. Taimanov, “Infinitesimal Darboux transformations of the spectral curves of tori in the four-space,” Int. Math. Res. Not., No. 2, Article ID rnm005 (2007).
I. A. Taimanov and S. P. Tsarev, “Two-dimensional rational solitons and their blowup via the Moutard transformation,” Teoret. Mat. Fiz. 157(2), 188–207 (2008) [Theoret. and Math. Phys. 157 (2), 1525–1541 (2008)].
C. Bohle and G. P. Peters, “Soliton spheres,” Trans. Amer. Math. Soc. 363(10), 5419–5463 (2011).
B. G. Konopelchenko, “Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy,” Ann. Global Anal. Geom. 18(1), 61–74 (2000).
I. A. Taimanov, “Surfaces in the four-space and the Davey-Stewartson equations,” J. Geom. Phys. 56(8), 1235–1256 (2006).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © I. A. Taimanov, 2015, published in Matematicheskie Zametki, 2015, Vol. 97, No. 1, pp. 129–141.
Rights and permissions
About this article
Cite this article
Taimanov, I.A. The Moutard transformation of two-dimensional Dirac operators and Möbius geometry. Math Notes 97, 124–135 (2015). https://doi.org/10.1134/S0001434615010149
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0001434615010149