Skip to main content
Log in

The Moutard transformation of two-dimensional Dirac operators and Möbius geometry

Mathematical Notes Aims and scope Submit manuscript

Abstract

We describe the action of inversion on given Weierstrass representations for surfaces and show that the Moutard transformation of two-dimensional Dirac operators maps the potential (the Weierstrass representation) of a surface S to the potential of a surface \(\tilde S\) obtained from S by inversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. D. Yu, Q. P. Liu, and Sh. Wang, “Darboux transformation for the modified Veselov-Novikov equation,” J. Phys. A 35(16), 3779–3785 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  2. B. G. Konopelchenko, “Induced surfaces and their integrable dynamics,” Stud. Appl. Math. 96, 9–51 (1996).

    MATH  MathSciNet  Google Scholar 

  3. I. A. Taimanov, “Modified Novikov-Veselov equation and differential geometry of surfaces,” in Solitons, Geometry, and Topology: On the Crossroads, Amer. Math. Soc. Transl. Ser. 2 (Amer. Math. Soc., Providence, RI, 1997), Vol. 179, pp. 133–151.

    Google Scholar 

  4. I. A. Taimanov, “Two-dimensional Dirac operator and the theory of surfaces,” Uspekhi Mat. Nauk 61(1), 85–164 (2006) [Russian Math. Surveys 61 (1), 79–159 (2006)].

    Article  MathSciNet  Google Scholar 

  5. I. A. Taimanov, “The Weierstrass representation of spheres in ℝ3, the Willmore numbers, and soliton spheres,” in Trudy Mat. Inst. Steklov Vol. 225: Solitons, Geometry, and Topology: On the Crossroads (Nauka, Moscow, 1999), pp. 339–361 [Proc. Steklov Inst. Math. 225, 322–343 (1999)].

    Google Scholar 

  6. L. V. Bogdanov, “Veselov-Novikov equation as a natural two-dimensional generalization of the Korteweg-de Vries equation,” Teoret. Mat. Fiz. 70(2), 309–314 (1987) [Theoret. and Math. Phys. 70 (2), 219–223 (1987)].

    MathSciNet  Google Scholar 

  7. I. A. Taimanov, “The Weierstrass representation of closed surfaces in ℝ3,” Funktsional. Anal. Prilozhen. 32(4), 49–62 (1998) [Functional Anal. Appl. 32 (4), 258–267 (1998)].

    Article  MathSciNet  Google Scholar 

  8. B.A. Dubrovin, I. M. Krichever, and S.P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces,” Dokl. Akad. Nauk SSSR 229(1), 15–18 (1976) [Soviet Math. Dokl. 17, 947–951 (1977)].

    MathSciNet  Google Scholar 

  9. P. G. Grinevich and M. U. Schmidt, “Conformal invariant functionals of immersions ofri into ℝ3,” J. Geom. Phys. 26(1–2), 51–78 (1997).

    MathSciNet  Google Scholar 

  10. P. G. Grinevich and I. A. Taimanov, “Infinitesimal Darboux transformations of the spectral curves of tori in the four-space,” Int. Math. Res. Not., No. 2, Article ID rnm005 (2007).

    Google Scholar 

  11. I. A. Taimanov and S. P. Tsarev, “Two-dimensional rational solitons and their blowup via the Moutard transformation,” Teoret. Mat. Fiz. 157(2), 188–207 (2008) [Theoret. and Math. Phys. 157 (2), 1525–1541 (2008)].

    Article  MathSciNet  Google Scholar 

  12. C. Bohle and G. P. Peters, “Soliton spheres,” Trans. Amer. Math. Soc. 363(10), 5419–5463 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  13. B. G. Konopelchenko, “Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy,” Ann. Global Anal. Geom. 18(1), 61–74 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  14. I. A. Taimanov, “Surfaces in the four-space and the Davey-Stewartson equations,” J. Geom. Phys. 56(8), 1235–1256 (2006).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Taimanov.

Additional information

Original Russian Text © I. A. Taimanov, 2015, published in Matematicheskie Zametki, 2015, Vol. 97, No. 1, pp. 129–141.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taimanov, I.A. The Moutard transformation of two-dimensional Dirac operators and Möbius geometry. Math Notes 97, 124–135 (2015). https://doi.org/10.1134/S0001434615010149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434615010149

Keywords

Navigation