Mathematical Notes

, Volume 97, Issue 1–2, pp 73–84 | Cite as

Existence of solutions to boundary-value problems for semilinear Δγ differential equations

  • D. T. Luyen
  • N. M. TriEmail author


In this paper, we study the existence of weak solutions for the boundary-value problem
$$\Delta _\gamma u + g(x,u) = 0in\Omega u = u_0 on\partial \Omega ,$$
where Ω is a bounded domain with smooth boundary in ℝ N (N ≥ 2) and Δγ is a subelliptic operator of the type
$$\Delta _\gamma u = \sum\limits_{j = 1}^N {\partial _{x_j } (\gamma _j^2 \partial _{x_j } u)} ,\partial _{x_j } u = \frac{{\partial u}} {{\partial x_j }},\gamma = (\gamma _1 ,\gamma _2 ,...,\gamma _N ) $$
. We use the sub-super solution and variational methods.


semilinear degenerate elliptic equation subsolution supersolution variational method boundary-value problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Jerison, “The Dirichlet problem for the Kohn-Laplacian on the Heisenberg group, II,” Journal of Funt. Anal. 43, 224–257 (1981).CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    D. S. Jerison and J. M. Lee, “The Yamabe problem on CR manifolds,” J. Diff. Geom 25, 167–197 (1987).zbMATHMathSciNetGoogle Scholar
  3. 3.
    N. Garofalo and E. Lanconelli, “Existence and nonexistence results for semilinear equations on the Heisenberg group,” Indiana Univ. Math. J 41, 71–98 (1992).CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    N. M. Tri, “On Grushin’s equation,” Mat. Zametki 63(1), 95–105 (1998) [Math. Notes 63 (1), 84–93 (1998)].CrossRefMathSciNetGoogle Scholar
  5. 5.
    N. M. Tri, “Critical Sobolev exponent for hypoelliptic operators,” Acta Mathematica Vietnamica 23, No. 1, 83–94 (1998).zbMATHMathSciNetGoogle Scholar
  6. 6.
    N. T. C. Thuy and N. M. Tri, “Some existence and non-existence results for boundary value problem (BVP) for semilinear degenerate elliptic operators,” Russ. J. Math. Phys. 9, 366–371 (2002).MathSciNetGoogle Scholar
  7. 7.
    P.T. Thuy and N. M. Tri, “Nontrivial solutions to boundary-value problems for semilinear strongly degenerate elliptic differential equations,” Nonlinear Diff. Equ. Appl. 19, 279–298 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    A. E. Kogoj and E. Lanconelli, “On semilinear Δγ-Laplace equation,” Nonlinear Analysis 75, 4637–4649 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    M. Struwe, “Variational Methods,” in Ergeb. der Math. u. Grenzgeb. (Springer-Verlag, 1996), Vol. 34.Google Scholar
  10. 10.
    V. V. Grushin, On a Class of Hypoelliptic Operators, Math. USSR Sbornik 12 (1970), 458–476.CrossRefGoogle Scholar
  11. 11.
    N. M. Tri, Recent Progress in the Theory of Semilinear Equations Involving Degenerate Elliptic Differential Operators (Publishing House for Science and Technology of the Vietnam Academy of Science and Technology, 2014)Google Scholar
  12. 12.
    N. M. Chuong and T. D. Ke, “Existence of solutions for a nonlinear degenerate elliptic system,” Electron J. Differential Equations 93, 1–15 (2004).MathSciNetGoogle Scholar
  13. 13.
    N. M. Tri, Semilinear Degenerate Elliptic Differential Equations, Local and global theories (Lambert Academic Publishing, 2010).Google Scholar
  14. 14.
    D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer-Verlag, 1997).Google Scholar
  15. 15.
    D. T. Luyen and N. M. Tri, “On boundary-value problem for semilinear degenerate elliptic differential equations,” AIP Conf. Proc. 1450, 13–17 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Department of MathematicsHoa Lu UniversityNinh Nhat, Ninh Binh CityVietnam
  2. 2.Institute of MathematicsVietnam Academy of Science and TechnologyHanoiVietnam

Personalised recommendations