Mathematical Notes

, Volume 97, Issue 1–2, pp 21–29 | Cite as

On Schur’s conjecture in ℝ4

  • V. V. Bulankina
  • A. B. Kupavskii
  • A. A. Polyanskii


A diameter graph in ℝ d is a graph in which vertices are points of a finite subset of ℝ d and two vertices are joined by an edge if the distance between them is equal to the diameter of the vertex set. This paper is devoted to Schur’s conjecture, which asserts that any diameter graph on n vertices in ℝ d contains at most n complete subgraphs of size d. It is known that Schur’s conjecture is true in dimensions d ≤ 3. We prove this conjecture for d = 4 and give a simple proof for d = 3.


diameter graph Schur’s conjecture Borsuk’s conjecture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Brass, W. Moser, and J. Pach, Research Problems in Discrete Geometry (Springer-Verlag, Berlin, 2005).zbMATHGoogle Scholar
  2. 2.
    A. M. Raigorodskii, “Borsuk’s problem and the chromatic numbers of some metric spaces,” Uspekhi Mat. Nauk 56(1), 107–146 (2001) [Russian Math. Surveys 56 (1), 103–139 (2001)].CrossRefMathSciNetGoogle Scholar
  3. 3.
    A. M. Raigorodskii, “Around Borsuk’s hypothesis,” in Contemporary Mathematics: Fundamental Directions, Geometry and Mechanics, Vol. 23: Geometry and Mechanics (Ross. Univ. Druzhby Narodov, Moscow, 2007), pp. 147–164 [J. Math. Sci. 154 (4), 604–623 (2008)].Google Scholar
  4. 4.
    A. M. Raigorodskii, “Three lectures on the Borsuk partition problem,” in London Math. Soc. Lecture Note Ser., Vol. 347: Surveys in Contemporary Mathematics(Cambridge Univ. Press, Cambridge, 2008), pp. 202–247.Google Scholar
  5. 5.
    K. Borsuk, “Drei Sätzeüber die n-dimensionale euklidische Sphäre,” Fund. Math. 20, 177–190 (1933).Google Scholar
  6. 6.
    J. Kahn and G. Kalai, “A counterexample to Borsuk’s conjecture,” Bull. Amer. Math. Soc. (N. S.) 29(1), 60–62 (1993).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    V. L. Dol’nikov, “Some properties of graphs of diameters,” Discrete Comput. Geom. 24(2–3), 293–299 (2000).CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    A. Heppes and P. Révész, “Zum Borsukschen Zerteilungsproblem,” Acta Math. Acad. Sci. Hungar 7(2), 159–162 (1956).CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    H. Hopf and E. Pannwitz, “Aufgabe 167,” Jahresbericht Deutsch. Math.-Verein. 43, 114 (1934).Google Scholar
  10. 10.
    B. Grünbaum, “A proof of Vászonyi’s conjecture,” Bull. Res. Council Israel. Sec. A 6, 77–78 (1956).Google Scholar
  11. 11.
    A. Heppes, “Beweis einer Vermutung von A. Vázsonyi,” Acta Math. Acad. Sci. Hungar. 7(3–4), 463–466 (1956).CrossRefMathSciNetGoogle Scholar
  12. 12.
    S. Straszewicz, “Sur un problème géométrique de P. Erdős,” Bull. Acad. Polon. Sci. Cl. III 5, 39–40 (1957).zbMATHMathSciNetGoogle Scholar
  13. 13.
    Z. Schur, M. A. Perles, H. Martini, and Y. S. Kupitz, “On the number of maximal regular simplices determined by n points in ℝd,” in Algorithms Combin., Vol. 25: Discrete and Computational Geometry (Springer-Verlag, Berlin, 2003), pp. 767–787.CrossRefGoogle Scholar
  14. 14.
    F. Morić and J. Pach, “Remarks on Schur’s conjecture,” in Lecture Notes in Comput. Sci., Vol. 8296: Computational Geometry and Graphs (Springer-Verlag, Berlin, 2013), pp. 120–131.Google Scholar
  15. 15.
    K. J. Swanepoel, “Unit distances and diameters in Euclidean spaces,” Discrete Comput. Geom. 41(1), 1–27 (2009).CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. V. Bulankina
    • 1
  • A. B. Kupavskii
    • 2
  • A. A. Polyanskii
    • 3
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow RegionRussia
  3. 3.Moscow Institute of Physics and TechnologyState UniversityDolgoprudnyiRussia

Personalised recommendations