Mathematical Notes

, Volume 95, Issue 5–6, pp 795–805 | Cite as

Interior Klein polyhedra



The convex hull of all integer points of a noncompact polyhedron is closed and is a generalized polyhedron only under certain conditions. It is proved that if only the integer points in the interior of the polyhedron are taken, then most of the conditions can be dropped. Moreover, the object thus obtained has properties resembling those of a Klein polyhedron, and it is a Klein polyhedron in the case of an irrational simplicial cone.


continued fraction Klein polyhedron interior Klein polyhedron simplicial cone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Erdös, P. M. Gruber, and J. Hammer, Lattice Points, in Pitman Monogr. Surveys Pure Appl. Math. (Longman Sci. & Tech., Harlow, 1989), Vol. 39.Google Scholar
  2. 2.
    O. Perron, “Grundlagen für eine Theorie des Jacobische Kettenbruchalgoritmus,” Math. Ann. 64, 1–76 (1907).CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    D. I. Bodnar, Branching Continued Fractions (Naukova Dumka, Kiev, 1986) [in Russian].Google Scholar
  4. 4.
    F. Klein, “Über eine geometrische Auffassung der gewöhnlichen Kettenbruchentwickelung,” Gött. Nachr. 3, 357–359 (1895).Google Scholar
  5. 5.
    V. I. Arnol’d, “A-graded algebras and continued fractions,” Comm. Pure Appl. Math. 42(7), 993–1000 (1989).CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    A. D. Bryuno and V. I. Parusnikov, “Klein polyhedrals for two cubic Davenport forms,” Mat. Zametki 56(4), 9–27 (1994) [Math. Notes 56 (4), 994–1007 (1994)].MathSciNetGoogle Scholar
  7. 7.
    J.-O. Mussafir, “Sails and Hilbert bases,” Funktsional. Anal. i Prilozhen. 34(2), 43–49 (2000) [Functional Anal. Appl. 34 (2), 114–118 (2000)].CrossRefMathSciNetGoogle Scholar
  8. 8.
    O. N. German, “Sails and Hilbert bases,” in Trudy Mat. Inst. Steklov, Vol. 239: Discrete Geometry and Geometry of Numbers (Nauka, Moscow, 2002), pp. 98–105 [Proc. Steklov Inst. Math. 239, 88–95 (2002)].Google Scholar
  9. 9.
    O. N. German, “Sails and norm minima of lattices,” Mat. Sb. 196(3), 31–60 (2005) [Sb. Math. 196 (3), 337–365 (2005)].CrossRefMathSciNetGoogle Scholar
  10. 10.
    O. N. German, “Klein polyhedra and relative minima of lattices,” Mat. Zametki 79(4), 546–552 (2006) [Math. Notes 79 (4), 505–510 (2006)].CrossRefMathSciNetGoogle Scholar
  11. 11.
    O. N. German, “Klein polyhedra and lattices with positive norm minima,” J. Théor. Nombres Bordeaux 19(1), 175–190 (2007).CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    O. N. German and E. L. Lakshtanov, “On a multidimensional generalization of Lagrange’s theorem on continued fractions,” Izv.Ross. Akad. Nauk Ser. Mat. 72(1), 51–66 (2008) [Izv. Math. 72 (1), 47–61 (2008)].CrossRefMathSciNetGoogle Scholar
  13. 13.
    M. L. Kontsevich and Yu. M. Suhov, “Statistics of Klein polyhedra and multidimensional continued fractions,” in Pseudoperiodic Topology, Amer. Math. Soc. Transl. Ser. 2 (Amer. Math. Soc., Providence, RI, 1999), Vol. 197, pp. 9–27.Google Scholar
  14. 14.
    A. A. Illarionov and D. A. Slinkin, “On the average number of vertices of Klein polyhedra in integer lattices,” DalnevostochnyiMat. Zh. 11(1), 48–55 (2011).MATHMathSciNetGoogle Scholar
  15. 15.
    A. A. Illarionov, “On the statistical properties of Klein polyhedra in three-dimensional lattices,” Mat. Sb. 204(6), 23–46 (2013) [Sb. Math. 204 (6), 801–823 (2013)].CrossRefMathSciNetGoogle Scholar
  16. 16.
    S. S. Dey and D. A. Morán R., Some Properties of Convex Hulls of Integer Points Contained in General Convex Sets, Preprint (2011).Google Scholar
  17. 17.
    J.-O. Moussafir, “Convex hulls of integral points,” Zap. Nauchn. Sem. POMI 266, 188–217 (2000) [J. Math. Sci. 113 (5), 647–665 (2003)].MATHGoogle Scholar
  18. 18.
    G. M. Ziegler, Lectures on Polytopes, in Grad. Texts in Math. (Springer-Verlag, NewYork, 1995), Vol. 152.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations