Skip to main content
Log in

A generalization of Bihari’s lemma to the case of Volterra operators in Lebesgue spaces

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

For operators acting in the Lebesgue space L q (Π), 1 < q < ∞, an abstract analog of Bihari’s lemma is stated and proved. We show that it can be used to derive a uniform pointwise estimate of the increment of the solution of a controlled functional-operator equation in the Lebesgue space. The procedure of reducing controlled initial boundary-value problems to this equation is illustrated by the Goursat-Darboux problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Bihari, “A generalization a lemma of Bellman and its application to uniqueness problems of differential equations,” ActaMath. Acad. Sci. Hungar. 7(No. 1), 81–94 (1956).

    Article  MATH  MathSciNet  Google Scholar 

  2. N. V. Azbelev, “On limits of applicability of the theorem of Chaplygin on differential inequalities,” Mat. Sb. 39(2), 161–178 (1956).

    MathSciNet  Google Scholar 

  3. N. V. Azbelev and Z. B. Tsalyuk, “On integral inequalities. I,” Mat. Sb. 56(3), 325–342 (1962).

    MathSciNet  Google Scholar 

  4. N. S. Kurpel’ and B. A. Shuvar, Two-Sided Operator Inequalities and Their Applications (Naukova Dumka, Kiev, 1980) [in Russian].

    MATH  Google Scholar 

  5. E. S. Zhukovskii, “Volterra inequalities in function spaces,” Mat. Sb. 195(9), 3–18 (2004) [Sb. Math. 195 (9), 1235–1251 (2004)].

    Article  MathSciNet  Google Scholar 

  6. A. V. Chernov, “Pointwise estimation of the difference of the solutions of a controlled functional operator equation in Lebesgue spaces,” Mat. Zametki 88(2), 288–302 (2010) [Math. Notes 88 (2), 262–274 (2010)].

    Article  MathSciNet  Google Scholar 

  7. M. Aassila, “Global existence and energy decay for a damped quasilinear wave equation,” Math. Methods Appl. Sci. 21(13), 1185–1194 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Ikehata and N. Okazawa, “Yosida approximation and nonlinear hyperbolic equations,” Nonlinear Anal. 15(5), 479–495 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  9. V. Komornik, Exact Controllability and Stabilization: TheMultiplierMethod, in RAMRes. Appl.Math. (John Wiley & Sons, Chichester, 1994), Vol. 36.

    Google Scholar 

  10. D. Baĭnov and P. Simeonov, Integral Inequalities and Applications, in Math. Appl. (East European Ser.) (Kluwer Acad. Publ., Dordrecht, 1992), Vol. 57.

    Google Scholar 

  11. S. S. Dragomir and Y.-H. Kim, “Some integral inequalities for functions of two variables,” Electron. J. Differential Equations, Paper No. 10 (2003).

    Google Scholar 

  12. V. D. Nogin, Theory of Stability of Motion (SPbGU, St. Petersburg, 2008) [in Russian].

    Google Scholar 

  13. M. A. Krasnosel’skii, P. P. Zabreiko, E. I. Pustyl’nik, and P. E. Sobolevskii, Integral Operators in Spaces of Summable Functions (Nauka, Moscow, 1966) [in Russian].

    MATH  Google Scholar 

  14. V. I. Sumin and A. V. Chernov, “On sufficient conditions for the stability of the existence of global solutions of Volterra operator equations,” Vestnik Nizhegorod. Univ. Ser. Mat. Modeli Optim. Upravl. 26(1), 39–49 (2003).

    Google Scholar 

  15. V. I. Sumin and A. V. Chernov, Volterra Operator Equations in Banach Spaces: Stability of the Existence ofGlobal Solutions, Available fromVINITI, No. 1198-V00, 25.04.00 (Nizhegorod. Univ., Nizhnii Novgorod, 2000) [in Russian].

    Google Scholar 

  16. V. I. Sumin, “The features of gradient methods for distributed optimal-control problems,” Zh. Vychisl.Mat. i Mat. Fiz. 30(1), 3–21 (1990) [U. S. S. R. Comput. Math. and Math. Phys. 30 (1), 1–15 (1990)].

    MathSciNet  Google Scholar 

  17. V. I. Sumin, “The controlled functional Volterra equations in the Lebesgue spaces,” Vestnik Nizhegorod. Univ. Ser.Mat. Modeli Optim. Upravl. 19(2), 138–151 (1998).

    Google Scholar 

  18. V. I. Sumin and A. V. Chernov, “Operators in spaces of measurable functions: The Volterra property and quasinilpotency,” Differ.Uravn. 34(10), 1402–1411 (1998) [Differ. Equations 34 (10), 1403–1411 (1998)].

    MathSciNet  Google Scholar 

  19. Yu. L. Daletskii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, in Nonlinear Analysis and its Applications Series (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  20. A. V. Chernov, “On total preservation of global solvability of functional-operator equations,” Vestnik Nizhegorod. Univ., No. 3, 130–137 (2009).

    Google Scholar 

  21. L. V. Kantorovich and G. P. Akilov, Functional Analysis (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  22. G. Birkhoff, Lattice Theory, 3d ed., in Amer.Math. Soc. Colloquium Publ. (Amer. Math. Soc., Providence, RI, 1967; Nauka, Moscow, 1984), Vol. XXV.

    Google Scholar 

  23. A. G. Sveshnikov, A. B. Al’shin, and M.O. Korpusov, Nonlinear Functional Analysis and Its Applications to Partial Differential Equations (Nauchn. Mir, Moscow, 2008) [in Russian].

    Google Scholar 

  24. V. I. Sumin, Functional Volterra Equations in the Theory of Optimal Control of Distributed Systems, Part I (Nizhegorod. Univ., Nizhnii Novgorod, 1992) [in Russian].

    Google Scholar 

  25. A. V. Arguchintsev and O. A. Krutikova, “Optimization of semilinear hyperbolic systems with smooth boundary controls,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 2, 3–12 (2001) [Russian Math. (Iz. VUZ) 45 (2), 1–9 (2001)].

    Google Scholar 

  26. A. A. Zlotnik, “Weak solutions to the equations of motion of viscous compressible reacting binary mixtures: uniqueness and Lipschitz-continuous dependence on data,” Mat. Zametki 75(2), 307–310 (2004) [Math. Notes 75 (2), 278–283 (2004)].

    Article  MathSciNet  Google Scholar 

  27. S. F. Morozov and V. I. Sumin, “Optimization of nonlinear transport processes,” Dokl. Akad. Nauk SSSR 247(4), 794–798 (1979) [Soviet Math. Dokl. 20, 802–806 (1979)].

    MathSciNet  Google Scholar 

  28. V. I. Plotnikov and V. I. Sumin, “Optimization of distributed systems in Lebesgue space,” Sibirsk. Mat. Zh. 22(6), 142–161 (1981).

    MATH  MathSciNet  Google Scholar 

  29. V. I. Sumin, “Strong degeneration of singular controls in distributed optimization problems,” Dokl. Akad. Nauk SSSR 320(2), 295–299 (1991) [SovietMath. Dokl. 44 (2), 453–458 (1992)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chernov.

Additional information

Original Russian Text © A. V. Chernov, 2013, published in Matematicheskie Zametki, 2013, Vol. 94, No. 5, pp. 757–769.

Sometimes it is also called the Gronwall-Bellman lemma or Bellman’s lemma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernov, A.V. A generalization of Bihari’s lemma to the case of Volterra operators in Lebesgue spaces. Math Notes 94, 703–714 (2013). https://doi.org/10.1134/S0001434613110114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434613110114

Keywords

Navigation