Skip to main content
Log in

On the gowers norms of certain functions

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We consider functions f(x, y) whose smallness condition for the rectangular norm implies the smallness of the rectangular norm for f(x, x + y). We also study families of functions with a similar property for the higher Gowers norms. The method of proof is based on a transfer principle for sums between special systems of linear equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. T. Gowers, “A new proof Szemerédi’s theorem for arithmetic progressions of length four,” Geom. Funct. Anal. 8(3), 529–551 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  2. W. T. Gowers, “A new proof Szemerédi’s theorem,” Geom. Funct. Anal. 11(3), 465–588 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Green and T. Tao, “The primes contain arbitrarily long arithmetic progressions,” Ann. of Math. (2) 167(2), 481–547 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Green and T. Tao, “An inverse theorem for the Gowers U 3(G) norm,” Proc. Edinb. Math. Soc. (2) 51(1), 73–153 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Green and T. Tao, “The distribution of polynomials over finite fields, with applications to the Gowers norms,” Contrib. Discrete Math. 4(2), 1–36 (2009).

    MathSciNet  MATH  Google Scholar 

  6. B. Green and T. Tao, “An equivalence between inverse sumset theorems and inverse conjectures for the U 3 norm,” Math. Proc. Cambridge Philos. Soc. 149(1), 1–19 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Green and T. Tao, “The quantitative behaviour of polynomial orbits on nilmanifolds,” Ann. of Math. (2) 175(2), 465–540 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Green and T. Tao, “Quadratic uniformity for the Möbius function,” Ann. Inst. Fourier (Grenoble) 58(6), 1863–1935 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Green, “Finite fieldmodels in additive combinatorics,” in Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. (Cambridge Univ. Press, Cambridge, 2005), Vol. 327, pp. 1–27.

    Google Scholar 

  10. T. Tao and T. Ziegler, “The inverse conjecture for the Gowers norm over finite fields via correspondence principle,” Anal. PDE 3(1), 1–20 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Samorodnitsky and L. Trevisan, “Gowers uniformity, influence of variables and PCPs,” SIAM J. Comput. 39(1), 323–360 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Lovett, R. Meshulam, and A. Samorodnitsky, “Inverse conjecture for the Gowers norm is false,” Theory Comput. 7, 131–145 (2011).

    Article  MathSciNet  Google Scholar 

  13. I. D. Shkredov, “On a problem of Gowers,” Izv. Ross. Akad. Nauk Ser. Mat. 70(2), 179–221 (2006) [Izv. Math. 70 (2), 385–425 (2006)].

    MathSciNet  Google Scholar 

  14. I. D. Shkredov, “On a generalization of Szemerédi’s theorem,” Proc. LondonMath. Soc. (3) 93(3), 723–760 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  15. I. D. Shkredov, “On a two-dimensional analogue of Szemerédi’s theorem in Abelian groups,” Izv. Ross. Akad. Nauk Ser.Mat. 73(5), 181–224 (2009) [Izv.Math. 73 (5), 1033–1075 (2009)].

    MathSciNet  Google Scholar 

  16. H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory (Princeton Univ. Press, Princeton, NJ, 1981) [in Russian].

    MATH  Google Scholar 

  17. T. Tao, “A quantitative ergodic theory proof Szemerédi’s theorem,” Electron. J. Combin. 13(1) (2006), Research Paper 99.

    Google Scholar 

  18. T. Tao, “Norm convergence of multiple ergodic averages for commuting transformations,” Ergodic Theory Dynam. Systems 28(2), 657–688 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Host and B. Kra, “Nonconventional ergodic averages and nilmanifolds,” Ann. of Math. (2) 161(1), 397–488 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Host and B. Kra, “Convergence of Conze-Lesigne averages,” Ergodic Theory Dynam. Systems 21(2), 493–509 (2001).

    Article  MathSciNet  Google Scholar 

  21. B. Host and B. Kra, “Convergence of polynomial ergodic averages,” Israel J. Math. 149(1–19) (2005).

  22. T. Ziegler, “A non-conventional ergodic theorem for a nilsystem,” Ergodic Theory Dynam. Systems 25(4), 1357–1370 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Ziegler, “Universal characteristic factors and Furstenberg averages,” J. Amer. Math. Soc. 20(1), 53–97 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Austin, On the Norm Convergence of Nonconventional Ergodic Averages, Preprint.

  25. W. T. Gowers, “Quasirandomness, counting and regularity for 3-uniform hypergraphs,” Combin. Probab. Comput. 15(1–2), 143–184 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  26. W. T. Gowers, “Hypergraph regularity and the multidimensional Szemerédi theorem,” Ann. ofMath. (2) 166(3), 897–946 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Erdös and E. Szemerédi, “On sums and products of integers,” in Studies in Pure Mathematics (Birkhäuser-Verlag, Basel, 1983), pp. 213–218 [in Russian].

    Google Scholar 

  28. J. Bourgain, N. Katz, and T. Tao, “A sum-product estimate in finite fields and their applications,” Geom. Funct. Anal. 14(1), 27–57 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  29. I.M. Vinogradov, Foundations of the Theory of Numbers (Lan’, St. Petersburg, 2004) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Shkredov.

Additional information

Original Russian Text © I. D. Shkredov, 2012, published in Matematicheskie Zametki, 2012, Vol. 92, No. 4, pp. 609-2627.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shkredov, I.D. On the gowers norms of certain functions. Math Notes 92, 554–569 (2012). https://doi.org/10.1134/S0001434612090271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434612090271

Keywords

Navigation