Skip to main content
Log in

Morse-Smale diffeomorphisms with three fixed points

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

It is proved that the closures of separatrices for a Morse-Smale diffeomorphism with three fixed points are flatly embedded spheres if the dimension of the manifold is at least 6 and may be wildly embedded spheres if the dimension of the manifold is 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Anosov, Smooth Dynamical Systems, Chap. 1: Basic Notions, in Current Problems in Mathematics: Fundamental Directions, Vol. 1: Dynamical Systems-1, Itogi Nauki i Tekhniki (VINITI, Moscow, 1985), pp. 156–178 [in Russian]; Smooth Dynamical Systems, Chap. 2: Elementary theory, in Current Problems in Mathematics: Fundamental Directions, Vol. 1: Dynamical Systems-1, Itogi Nauki i Tekhniki (VINITI, Moscow, 1985), pp. 178–204 [in Russian].

    Google Scholar 

  2. D. V. Anosov and V. V. Solodov, Dynamical Systems with Hyperbolic Behavior, Chap. 1: Hyperbolic Sets, in Current Problems in Mathematics: Fundamental Directions, Vol. 66: Dynamical Systems-9, Itogi Nauki i Tekhniki (VINITI, Moscow, 1991), pp. 12–99 [in Russian].

    Google Scholar 

  3. S. Smale, “Differentiable dynamical systems,” Bull. Amer.Math. Soc. 73, 741–817 (1967); Usp.Mat. Nauk 25 (1), 113–185 (1970).

    Article  MathSciNet  Google Scholar 

  4. V. Z. Grines, E.V. Zhuzhoma, and V. S. Medvedev, “On the Morse-Smale diffeomorphisms with four periodic points on closed orientable manifolds,” Mat. Zametki 74(3), 369–386 (2003) [Math. Notes 74 (3–4), 369-386 (2003)].

    Article  MathSciNet  Google Scholar 

  5. D. Pixton, “Wild unstable manifolds,” Topology 16(2), 167–172 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Bonatti, V. Z. Grines, V. S. Medvedev, and E. Pécou, “On the topological classification of gradient-like diffeomorphisms without heteroclinic curves on three-dimensional manifolds,” Dokl. Ross. Akad. Nauk 377(2), 151–155 (2001) [Russian Acad. Sci. Dokl.Math. 63 (2), 161–164 (2001)].

    Google Scholar 

  7. C. Bonatti, V. Z. Grines, V. S. Medvedev, and E. Pécou, “On Morse-Smale diffeomorphisms without heteroclinic intersections on three-manifolds,” in Trudy Mat. Inst. Steklov, Vol. 236: Differential Equations and Dynamical Systems, Collection of papers (Nauka, Moscow, 2002), pp. 66–78 [Proc. Steklov Inst. Math. 236, 58–69 (2002)].

    Google Scholar 

  8. C. Bonatti, V. Z. Grines, and O. V. Pochinka, “Classification of Morse-Smale diffeomorphisms with a finite set of heteroclinic orbits on 3-manifolds,” in Trudy Mat. Inst. Steklov, Vol. 250: Differential Equations and Dynamical Systems, Collection of papers (Nauka, Moscow, 2005), pp. 5–53 [Proc. Steklov Inst.Math. 250, 1–46 (2005)].

    Google Scholar 

  9. C. Bonatti and V. Grines, “Knots as topological invariant for gradient-like diffeomorphisms of the sphere S 3,” J. Dynam. Control Systems 6(4), 579–602 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Bonatti, V. Grines, V. Medvedev, and E. Pécou, “Topological classification of gradient-like diffeomorphisms on 3-manifolds,” Topology 43(2), 369–391 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Bonatti, V. Grines, V. Medvedev, and E. Pécou, “Three-dimensional manifolds admitting Morse-Smale diffeomorphisms without heteroclinic curves,” Topology Appl. 117(3), 335–344 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Eells and N. H. Kuiper, “Manifolds which are like projective planes,” Inst. Hautes Études Sci. Publ. Math. 14, 5–46 (1962).

    Article  MathSciNet  Google Scholar 

  13. V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, and O. V. Pochinka, “Global attractor and repeller diffeomorphisms Morse-Smale,” in Trudy Mat. Inst. Steklov, Vol. 271: Differential Equations and Topology, Collection of papers (Nauka, Moscow, 2010), pp. 111–123 [Proc. Steklov Inst. Math. 271, 103–124 (2010)].

    Google Scholar 

  14. R. Abraham and S. Smale, “Nongeneracity of Ω-stability,” in Global Analysis, Proc. Sympos. Pure Math. (Amer. Math. Soc., Providence, RI, 1970), Vol. 14, pp. 5–8.

    Google Scholar 

  15. S. Smale, “Morse inequalities for a dynamical system,” Bull. Amer. Math. Soc. 66, 43–49 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  16. J. C. Cantrell, “Almost locally flat embeddings of S n−1 in S n,” Bull. Amer. Math. Soc. 69, 716–718 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  17. R. J. Daverman and G. A. Venema, Embeddings in Manifolds, in Grad. Stud. Math. (Amer. Math. Soc., Providence, R. I., 2009), Vol. 106.

    Google Scholar 

  18. A. T. Fomenko and D. B. Fuks, A Course in Homotopic Topology (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  19. L. V. Keldysh, Topological Embeddings in Euclidean space, in Trudy Mat. Inst. Steklov (Nauka, Moscow, 1966), Vol. 81 [Proc. Steklov Inst. Math. 81 (1966)].

    Google Scholar 

  20. A. V. Chernavskii, “Singular points of topological imbeddings of manifolds and the union of locally flat cells,” Dokl. Akad. Nauk SSSR 167(3), 528–530 (1966) [Soviet Math. Dokl. 7, 433–436 (1966)].

    MathSciNet  Google Scholar 

  21. J. Stallings, “On topologically unknotted spheres,” Ann. of Math. (2) 77(3), 490–503 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  22. J. C. Cantrell and C. H. Edwards, Jr., “Almost locally flat imbeddings of manifolds,” Michigan Math. J. 12(2), 217–223 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  23. R. H. Fox and E. Artin, “Some wild cells and spheres in three-dimensional space,” Ann. of Math. (2) 49(4), 979–990 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  24. J. J. Andrews and M. L. Curtis, “Knotted 2-spheres in the 4-sphere,” Ann. of Math. (2) 70(3), 565–571 (1959).

    Article  MathSciNet  Google Scholar 

  25. M. Hirsch, Differential Topology, in Grad. Texts in Math., Vol. 33 (Springer-Verlag, New York, 1976; Mir, Moscow, 1979).

    Google Scholar 

  26. V. A. Rokhlin and D. B. Fuks, Beginner’s Course in Topology: Geometric Chapters (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Zhuzhoma.

Additional information

Original Russian Text © E. V. Zhuzhoma, V. S. Medvedev, 2012, published in Matematicheskie Zametki, 2012, Vol. 92, No. 4, pp. 541–558.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuzhoma, E.V., Medvedev, V.S. Morse-Smale diffeomorphisms with three fixed points. Math Notes 92, 497–512 (2012). https://doi.org/10.1134/S0001434612090222

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434612090222

Keywords

Navigation