Advertisement

Mathematical Notes

, Volume 92, Issue 3–4, pp 426–441 | Cite as

Gigantic component in random distance graphs of special form

  • A. R. YarmukhametovEmail author
Article
  • 57 Downloads

Abstract

We consider the problem of threshold probability for the existence of a gigantic component in a certain series of random distance graphs. The results obtained generalize the classical Erdős-Rényi theorems in the case of geometric graphs of special form.

Keywords

random distance graph gigantic component in a random graph classical Erdős-Rényi theorems k-vertex tree Stirling’s formula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Alon and J. H. Spencer, The Probabilistic Method, 2nd ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, (J. Wiley, Chichester, 2000; Binom,Moscow, 2007).zbMATHCrossRefGoogle Scholar
  2. 2.
    P. Erdős and A. Rényi, “On random graphs. I,” Publ. Math. Debrecen 6, 290–297 (1959).MathSciNetGoogle Scholar
  3. 3.
    P. Erdős and A. Rényi A., “On the evolution of random graphs,” Magyar Tud. Akad. Mat. Kutató Int. Közl. 5, 17–61 (1960).Google Scholar
  4. 4.
    P. Erdős and A. Rényi, “On the strength of connectedness of a random graph,” Acta Math. Acad. Sci. Hungar. 12(1–2), 261–267 (1961).MathSciNetCrossRefGoogle Scholar
  5. 5.
    B. Bollobás, Random Graphs (Academic Press, New York, 1985).zbMATHGoogle Scholar
  6. 6.
    V. F. Kolchin, Random Graphs, in Probability Theory and Mathematical Statistics (Fizmatlit, Moscow, 2000) [in Russian].Google Scholar
  7. 7.
    A. M. Raigorodskii, Linearly Algebraic Method in Combinatorics (MTsNMO, Moscow, 2007) [in Russian].Google Scholar
  8. 8.
    A. M. Raigorodskii, “Borsuk’s problem and the chromatic numbers of some metric spaces,” Uspekhi Mat. Nauk 56(1), 107–146 (2001) [Russian Math. Surveys 56 (1), 103–139 (2001)].MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    A. R. Yarmukhametov, “Tree components in random distance graphs of special form,” Sovrem. Mat. Prilozh. 20, 98–110 (2011).Google Scholar
  10. 10.
    A. R. Yarmukhametov, “On the connection of random distance graphs of special form,” Chebyshev Sbornik 10(1 (29)), 95–108 (2009).MathSciNetGoogle Scholar
  11. 11.
    W. Feller, An Introduction to Probability Theory and Its Applications, 3d ed. (J. Wiley, New York-London-Sydney, 1968; Mir, Moscow, 1984), Vol. 1.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations