Mathematical Notes

, Volume 92, Issue 3–4, pp 362–368 | Cite as

On decoupling of functions of normal vectors

  • P. G. GrigorievEmail author
  • S. A. Molchanov


Two decoupling type inequalities for functions of Gaussian vectors are proved. In both cases, it turns out that the case of linear functions is the extreme one. The proofs involve certain properties ofWick’s (Hermite’s) polynomials and a refined version of Schur’s theorem on entrywise product of positive definite matrices.


decoupling normally distributed random vector Wick polynomial Hermite polynomial Schur product Hadamard product covariance matrix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Cherny, R. Douady, and S. Molchanov, “On measuring nonlinear risk with scarce observations,” Finance Stoch. 14(3), 375–395 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    A. S. Cherny, R. Douady, and S. A. Molchanov, On Measuring Hedge Fund Risk, Preprint (2008).Google Scholar
  3. 3.
    V. A. Malyshev and R. A. Minlos, Gibbs Random Fields: The Method of Cluster Expansions (Nauka, Moscow, 1985; Kluwer, Dordrecht, 1991).Google Scholar
  4. 4.
    I. Schur, “Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen,” J. Reine Angew. Math. 140, 1–28 (1911).zbMATHGoogle Scholar
  5. 5.
    G. Pólya and G. Szegő, Problems and Theorems in Analysis (Springer-Verlag, Berlin-Gottingen-Heidelberg-New York, 1964; Nauka, Moscow, 1978), Vol. 2.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.University of North CarolinaCharlotteUSA

Personalised recommendations