Mathematical Notes

, Volume 92, Issue 3–4, pp 345–355 | Cite as

Belt distance between facets of space-filling zonotopes

  • A. I. GarberEmail author


To every d-dimensional polytope P with centrally symmetric facets one can assign a “subway map” such that every line of this “subway” contains exactly the facets parallel to one of the ridges of P. The belt diameter of P is the maximum number of subway lines one needs to use to get from one facet to another. We prove that the belt diameter of a d-dimensional space-filling zonotope does not exceed ⌈log2(4/5)d⌉.


zonotope parallelohedron polytope belt diameter Voronoi’s conjecture tiling Dirichlet-Voronoi polytope canonical scaling of a tiling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Voronoï, “Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les paralléloèdres primitifs,” J. für Math. 136, 67–178 (1909).zbMATHGoogle Scholar
  2. 2.
    H. Minkowski, “Allgemeine Lehrsätze über die convexen Polyeder,”Gött. Nachr., 198–219 (1897).Google Scholar
  3. 3.
    P. McMullen, “Convex bodies which tile space by translation,” Mathematika 27(1), 113–121 (1980).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    B. A. Venkov, “On a class of Euclidean polyhedra,” Vestnik Leningrad.Univ. Ser.Mat. Fiz.Him. 9(2), 11–31 (1954).MathSciNetGoogle Scholar
  5. 5.
    O. K. Zhitomirskii, “Verschärfung eines Satzes von Voronoi,” Zh. Leningrad. Matem. Obshch. 2, 131–151 (1929).Google Scholar
  6. 6.
    R. M. Erdahl, “Zonotopes, dicings, and Voronoi’s conjecture on parallelohedra,” European J. Combin. 20(6), 527–549 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    A. Ordine, Proof of the Voronoi Conjecture on Parallelotopes in a New Special Case, Ph. D. Thesis (Queen’s University, Ontario, 2005).Google Scholar
  8. 8.
    B. Delaunay, “Sur la partition régulière de l’espace à 4 dimensions.Deuxième partie,” Izv. Akad. Nauk SSSR Ser. VII. Otd. Fiz.Mat. Nauk, No. 2, 147–164 (1929).Google Scholar
  9. 9.
    M. I. Shtogrin, “Regular Dirichlet-Voronoi partitions for the second triclinic group,” Trudy Mat. Inst. Steklov 123, 3–128 (1973) [Proc. Steklov Inst. Math. 123, 1–116 (1973)].Google Scholar
  10. 10.
    S. S. Ryshkov and E. P. Baranovskii, “S-types of n-dimensional lattices and five-dimensional primitive parallelohedra (with an application to covering theory),” Trudy Mat. Inst. Steklov 137, 3–131 (1976) [Proc. Steklov Inst.Math. 137, 1–140 (1976)].Google Scholar
  11. 11.
    P. Engel, “The contraction types of parallelohedra in \(\mathbb{E}\) 5,” Acta Cryst. Sec. A 56(5), 491–496 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    G. C. Shephard, “Space-filling zonotopes,” Mathematika 21, 261–269 (1974).MathSciNetCrossRefGoogle Scholar
  13. 13.
    P. McMullen, “Space tiling zonotopes,” Mathematika 22(2), 202–211 (1975).MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    G.M. Ziegler, Lectures on Polytopes, in Grad. Texts inMath. (Springer-Verlag, NewYork, 1995), Vol. 152.Google Scholar
  15. 15.
    A. P. Poyarkov and A. I. Garber, “On permutohedra,” Vestnik Moskov.Univ. Ser. I Mat. Mekh., No. 2, 3–8 (2006) [Moscow Univ.Math. Bull. 61 (2), 1–6 (2006)].Google Scholar
  16. 16.
    E. S. Fedorov, Foundations of the Theory of Shapes (Emperor’s Academy of Sciences Press, St.-Petersburg, 1885) [in Russian].Google Scholar
  17. 17.
    H. S.M. Coxeter, Regular Polytopes (Dover Publ., New York, 1973).Google Scholar
  18. 18.
    A. N. Magazinov, personal communication (2010).Google Scholar
  19. 19.
    B. A. Venkov, “On the projections of parallelohedra,” Mat. Sb. 49(91)(2), 207–224 (1959).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Yaroslavl State UniversityYaroslavlRussia

Personalised recommendations