Skip to main content
Log in

Asymptotic solutions of the Navier-Stokes equations and systems of stretched vortices filling a three-dimensional volume

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We construct asymptotic solutions of the Navier-Stokes equations describing periodic systems of vortex filaments entirely filling a three-dimensional volume. Such solutions are related to certain topological invariants of divergence-free vector fields on the two-dimensional torus. The equations describing the evolution of of such a structure are defined on a graph which is the set of trajectories of a divergence-free field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachev [Pukhnachov], and A. A. Rodionov, Application of Group-Theoretic Methods in Hydrodynamics (Nauka, Novosibirsk, 1994) [in Russian]; English transl. in: Mathematics and Its Applications 450 (Kluwer Academic Publishers, Dordrecht, 1998).

    MATH  Google Scholar 

  2. V. I. Arnold and B. Khesin, TopologicalMethods in Hydrodynamics, in Applied Mathematical Sciences (Springer, New York, 1998), Vol. 125.

    Google Scholar 

  3. V. I. Arnold, MathematicalMethods of ClassicalMechanics (Nauka, Moscow, 1974) [in Russian]; Second English Edition in: Graduate Texts inMathematics (Springer, New York-Berlin, 1989), Vol. 60.

    Google Scholar 

  4. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, “Mathematical aspects of classical and celestial mechanics,” in Current Problems in Mathematics. Fundamental Directions, Dynamical Systems (VINITI, Moscow, 1985), Vol. 3, pp. 5–304 [in Russian]; English transl. in: Dynamical systems. III. Encyclopaedia of Math. Sci., 3 (Springer, Berlin, 1997).

    Google Scholar 

  5. A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems, Vols. 1, 2 (Udmurtskii Universitet, Izhevsk, 1999; Chapman & Hall/CRC, Boca Raton, 2004).

    MATH  Google Scholar 

  6. G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1999).

    MATH  Google Scholar 

  7. S. A. Vakulenko and I. A. Molotkov, “Stationary wave beams in a strongly nonlinear the three-dimensional inhomogeneous medium,” inMathematical Questions in the Theory of Wave Propagation, No. 15, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 148, 52–60 (1985).

    MathSciNet  MATH  Google Scholar 

  8. S. A. Vakulenko and I. A. Molotkov, “Waves in a Nonlinear Inhomogeneous Medium That Are Concentrated in the Vicinity of a Given Curve,” Dokl. Akad. Nauk SSSR 262(3), 587–591 (1982).

    MathSciNet  Google Scholar 

  9. S. A. Vakulenko, V. P. Maslov, I. A. Molotkov, and A. I. Shafarevich, “Asymptotic solutions of the Hartree equation so that are concentrated, as h → 0, in a small neighborhood of a curve,” Dokl. Akad. Nauk RAN 345(6), 743–745 (1995).

    MathSciNet  Google Scholar 

  10. M. I. Vishik and A. I. Komech, “Individual and statistical solutions of a the two-dimensional Euler system,” Dokl. Akad. Nauk RAN 261(4), 780–785 (1981).

    MathSciNet  Google Scholar 

  11. M. A. Goldshtik, V. N. Shtern, and N. I. Yavorskii, Viscous Flows with Paradoxical Properties (Nauka, Novosibirsk, 1989) [in Russian].

    Google Scholar 

  12. S. Ju. [Yu.] Dobrokhotov and V. P. Maslov, “Finite-zone almost periodic solutions in WKB-approximations,” in: Current Problems in Mathematics (Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1980), Vol. 15, pp. 3–94 [in Russian].

    Google Scholar 

  13. S. Yu. Dobrokhotov and A. I. Shafarevich, “On the behavior of an incompressible fluid velocity field at infinity,” Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, No. 4, 38–42 (1996) [Fluid Dynam. 31 (4), 511–514 (1997)].

  14. S. Yu. Dobrokhotov, B. Tirozzi, and A. I. Shafarevich, “Representations of rapidly decaying functions by the Maslov canonical operator,” Mat. Zametki 82(5), 792–796 (2007) [Math. Notes 82 (5), 713–717 (2007)].

    MathSciNet  Google Scholar 

  15. V. I. Zhuk and O. S. Ryzhov, “On the boundary layer with self-induced pressure on a moving surface,” Dokl. Akad. Nauk RAN 248(2), 314–318 (1979).

    Google Scholar 

  16. Yu. K. Krasnov, “The Evolution of ‘Whirlwinds’,” in: Nonlinear Waves (Nauka, Moscow, 1987), pp. 174–189 [in Russian].

    Google Scholar 

  17. I. M. Krichever, “The averaging method for the two-dimensional ‘integrable’ equations,” Funktsional. Anal. i Prilozhen. 22(3), 37–52 (1988) [Functional Anal. Appl. 22 (3), 200–213 (1988)].

    MathSciNet  Google Scholar 

  18. G. E. Kuzmak, “Asymptotic solutions of nonlinear second-order differential equations with variable coefficients,” Prikl. Mat. Mekh. 23, 515–526 [J. Appl. Math. Mech. 23, 730–744 (1959)].

  19. A. G. Kulikovskii, “Strong discontinuities in flows of continua and their structure,” in: Probability Theory, Function Theory, Mechanics, Trudy Mat. Inst. Steklov 182 (1988), pp. 261–291.

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics, 2nd ed. (Pergamon, Oxford, 1987).

    Google Scholar 

  21. D. W. McLaughlin and A. C. Scott, “Soliton perturbation theory,” in: Nonlinear Evolution Equations Solvable by the Spectral Transform (Internat. Sympos., Accad. Lincei, Rome, 1977), Res. Notes in Math. 26 (Pitman, Boston, 1978), pp. 225–243.

    Google Scholar 

  22. V. P. Maslov, Asymptotic Methods for Solving Pseudodifferential Equations (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  23. V. P. Maslov, “Coherent structures, resonances and asymptotic nonuniqueness for the Navier-Stokes equations for large Reynolds numbers,” UspekhiMat. Nauk 41 (1986), 19–35.

    Google Scholar 

  24. V. P. Maslov and G. A. Omel’yanov, “Rapidly oscillating asymptotic solution of equations of magnetohydro-dynamics in the Tokamak approximation,” Teoret. Mat. Fiz. 92(2), 269–292 (1992) [Theoret. Math. Phys. 92 (2), 879–895 (1993)].

    MathSciNet  MATH  Google Scholar 

  25. V. P. Maslov and G. A. Omel’yanov, “Asymptotic soliton-like solutions of equations with small dispersion,” Uspekhi Mat. Nauk 36(3), 63–126 (1981).

    MathSciNet  MATH  Google Scholar 

  26. V. P. Maslov and A. I. Shafarevich, “A laminar wake in an arbitrary external flow,” Dokl. Akad. Nauk RAN 356(4), 476–480 (1997) [Phys. Dokl. 42 (10), 552–556 (1997)].

    MathSciNet  Google Scholar 

  27. V. P. Maslov and A. I. Shafarevich, “Localized asymptotic solutions of the Navier-Stokes equations and laminar wakes in an incompressible fluid,” Prikl. Mat. Mekh. 62(3), 424–432 (1998) [J. Appl. Math. Mech. 62 (3), 389–396 (1998)].

    MathSciNet  Google Scholar 

  28. V. P. Maslov, “On a general theorem of set theory leading to the Gibbs, Bose-Einstein and Pareto distributions as well as to the Zipf-Mandelbrot law for the stock market,” Mat. Zametki 78(6), 870–877 (2005) [Math. Notes 78 (6), 807–813 (2005)].

    Google Scholar 

  29. V. P. Maslov, “The lack-of-preference law and the corresponding distributions in frequency probability theory,” Mat. Zametki 80(2), 220–230 (2006) [Math. Notes 80 (2), 214–223 (2006).

    Google Scholar 

  30. V. P. Maslov, “Kolmogorov Law and the Kolmogorov and Taylor Scales in Anisotropic Turbulence,” Preprint 506 (M. V. Keldysh IPMRAN, Moscow, 1991) [in Russian].

    Google Scholar 

  31. I. A. Molotkov and S. A. Vakulenko, Concentrated Nonlinear Waves (Leningrad. Univ., Leningrad, 1988) [in Russian].

    Google Scholar 

  32. O. A. Oleinik and V. N. Samokhin, Mathematical Methods in Boundary Layer Theory, Applied Mathematics and Mathematical Computation 15 (Fizmatlit “Nauka”, Moscow, 1997; Chapman & Hall/CRC, Boca Raton, 1999).

    Google Scholar 

  33. O. M. Penkin and Yu. V. Pokornyi, “On some qualitative properties of equations on an the one-dimensional CW-complex,” Mat. Zametki 59(5), 777–780 (1996) [Math. Notes 78 (5–6), 562–565 (2005)].

    MathSciNet  Google Scholar 

  34. L. Prandtl, Gesammelte Abhandlungen zur angewandten Mechanik, Hydro- und Aerodynamik, in 3 Teilen (Springer, Berlin, 1961).

    MATH  Google Scholar 

  35. O. S. Ryzhov and E. D. Terent’ev, “An unsteady boundary layer with self-induced pressure,” Prikl. Mat. Mekh. 41(6), 1007–1023 (1977) [J. Appl. Math. Mech. 41 (6), 1024–1040 (1977)].

    MathSciNet  Google Scholar 

  36. L. I. Sedov, Continuum Mechanics, Vol. I, II (Nauka, Moscow, 1994); English transl. in: Mechanics of Continuous Media, Vols. 1, 2, Series in Theoretical and Applied Mechanics (World Scientific, River Edge, 1997), Vol. 4.

    MATH  Google Scholar 

  37. R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, 3rd ed., Studies inMathematics and its Applications (North-Holland, Amsterdam, 1984), Vol. 2.

    MATH  Google Scholar 

  38. Theory of Turbulent Jets, Ed. by G. N. Abramovich (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  39. G. B. Whitham, Linear and NonlinearWaves, A Wiley-Interscience Publication (John Wiley & Sons, New York, 1999).

    Book  Google Scholar 

  40. A. I. Shafarevich, “Differential equations on graphs that describe Asymptotic Solutions of Navier-Stokes Equations Localized in an a small neighborhood of a curve,” Differ. Uravn. 34(6), 1119–1130 (1998) [Diff. Eq. 34 (6), 1124–1134 (1999)].

    MathSciNet  Google Scholar 

  41. A. I. Shafarevich, “Generalized Prandtl-Maslov equations on graphs that describe stretched vortices in an incompressible fluid,” Dokl. Akad. Nauk RAN 358 (6) 1998, 752–755.

  42. A. I. Shafarevich, “Equations on graphs and asymptotic solutions of ‘restricted jet’ type of the Navier-Stokes system,” UspekhiMat. Nauk 53(4), 187 (1998) [Russ. Math. Surv. 53 (4), 838–839 (1998)].

    Google Scholar 

  43. A. I. Shafarevich, “The Navier-Stokes equations: Asymptotic solutions describing tangential discontinuities,” Mat. Zametki 67(6), 938–949 (2000) [Math. Notes 67 (6), 792–801 (2000)].

    MathSciNet  Google Scholar 

  44. S. Yu. Dobrokhotov and A. I. Shafarevich, “Some integral identities and remarks on the decay at infinity of the solution to the Navier-Stokes equation in the entire space,” Russ. J. Math. Phys. 2(1), 133–136 (1994).

    MathSciNet  MATH  Google Scholar 

  45. H. Flashka, M. Forest, and D. McLaughlin, “The multiphase averaging and the inverse spectral solution of Korteweg-de Vries Equations,” Comm. Pure and Appl. Math. 33(6), 739–784 (1980).

    Article  MathSciNet  Google Scholar 

  46. L. E. Fraenkel, “Examples of steady vortex rings of small cross-section in an ideal fluid,” J. Fluid Mech. 51, 119–135 (1972).

    Article  MATH  Google Scholar 

  47. A. Friedman and B. Turkington, “Vortex rings: Existence and asymptotic estimates,” Trans. Am. Math. Soc. 268, 1–37 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  48. A. Haefliger and G. Reeb, “Variétés (non separées) a une dimension et structures feuilletées du plan,” Enseign. Math. 3, 107–126 (1957).

    MathSciNet  MATH  Google Scholar 

  49. V. P. Maslov and G. A. Omel’yanov, “Fluctuation-generated Tokamak pinch instabilities,” Russ. J. Math. Phys. 2(4), 463–485 (1994).

    MathSciNet  MATH  Google Scholar 

  50. V.P. Maslov and A. I. Shafarevich, “Rapidly oscillating asymptotic solutions of the Navier-Stokes equations, coherent structures, Fomenko invariants, Kolmogorov spectrum and flicker noise,” Russ. J. Math. Phys. 13(4), 414–425 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  51. V. P. Maslov and A. I. Shafarevich, “Asymptotic solutions of the Navier-Stokes equations describing periodic systems of localized vortices,” Math. Notes 90(5), 686–700 (2011).

    Article  MathSciNet  Google Scholar 

  52. D. W. McLaughlin, G. C. Papanicolaou, and O. R. Pironneau, “Convection of microstructures and related problems,” SIAM J. Appl. Math. 45(5), 780–797 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  53. H. K. Moffatt, “Magnetostatic equilibria and analogous Euler flows of arbitrary complex topology. Part I: Fundamentals,” J. Fluid Mech. 159, 359–378 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  54. H. K. Moffatt, “On the existence of Euler flows that are topologically accessible from a given flow,” Revista Brasiliera de Ciencias Mecanicas IX, 93–101 (1987).

    Google Scholar 

  55. H. K. Moffatt, “Generalized vortex rings with and without swirl,” Fluid Dynamics Research (Holland) 3, 22–30 (1988).

    Article  Google Scholar 

  56. H. K. Moffatt, S. Kida, and K. Ohkitani, “Stretched vortices-sinews of turbulence: Large-Reynolds-number asymptotics,” J. Fluid Mech. 259, 241–264 (1994).

    Article  MathSciNet  Google Scholar 

  57. J. Norbury, “A Family of steady vortex rings,” J. Fluid Mech. 57, 417–431 (1973).

    Article  MATH  Google Scholar 

  58. L. Prandtl, “Über Flüssigkeitsbewegungen bei sehr kleiner Reibung,” in Verh. Int. Math. Kongr. Heidelberg, 1904 (Teubner, 1905), pp. 484–494.

  59. A. I. Shafarevich, “Asymptotical and topological constructions in hydrodynamics,” Operator Theory: Advances and Applications 132, 347–359 (2002).

    MathSciNet  Google Scholar 

  60. A. I. Shnirelman, “Lattice theory and flows of ideal incompressible fluid,” Russ. J. Math. Phys. 1(1), 105–113 (1993).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Maslov.

Additional information

The article was submitted by the authors for the English version of the journal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maslov, V.P., Shafarevich, A.I. Asymptotic solutions of the Navier-Stokes equations and systems of stretched vortices filling a three-dimensional volume. Math Notes 91, 207–216 (2012). https://doi.org/10.1134/S0001434612010221

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434612010221

Keywords

Navigation