Abstract
In this paper, we study the stability radii of positive quasipolynomials associated with linear functional difference equations in infinite-dimensional spaces. It is shown that the positive, real and complex stability radii coincide. Moreover, explicit formulas are derived for these stability radii and illustrated by a simple example.
This is a preview of subscription content, access via your institution.
References
A. Fischer, “Stability radii of infinite-dimensional positive systems,” Math. Control Signals Systems 10(3), 223–236 (1997).
D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory, Vol. 1, in Modelling, State Space Analysis, Stability and Robustness, Texts Appl. Math. (Springer-Verlag, Berlin, 2005), Vol. 48.
B. T. Anh and N. K. Son, “Stability radii of positive higher order difference system in infinite-dimensional spaces,” Systems Control Lett. 57(10), 822–827 (2008).
B. T. Anh, N. K. Son, and D. D. X. Thanh, “Stability radii of delay difference systems under affine parameter perturbations in infinite-dimensional spaces,” Appl. Math. Comput. 202(2), 562–570 (2008).
B. T. Anh and N. K. Son, “Stability radii of positive linear systems under affine parameter perturbations in infinite-dimensional spaces,” Positivity 12(4), 677–690 (2008).
B. T. Anh, N. K. Son, and D. D. X. Thanh, “Robust stability of Metzler operator and delay equation in L p([−h, 0];X),” Vietnam J. Math. 34(3), 357–368 (2006).
A. V. Bulatov and F. Daimond, “Real structural stability radius of infinite-dimensional linear systems: Its estimate,” Avtomat. i Telemekh., No. 5, 24–33 (2002) [Autom. Remote Control 63 (5), 713–722 (2002)].
N. A. Bobylev and A. V. Bulatov, “A bound on the real stability radius of continuous-time linear infinite-dimensional systems,” in Computational Mathematics and Modeling (Fizmatlit, Moscow, 2001), Vol. 1, pp. 77–86 [in Russian].
S. Clark, Yu. Latushkin, S. Montgomery-Smith, and T. Randolph, “Stability radius and internal versus external stability in Banach spaces: an evolution semigroup approach,” SIAM J. Control Optim. 38(6), 1757–1793 (2000).
D. Hinrichsen and A. J. Pritchard, “Robust stability of linear evolution operators on Banach spaces,” SIAM J. Control Optim. 32(6), 1503–1541 (1994).
D. Hinrichsen and A. J. Pritchard, “Stability radii of linear systems,” Systems Control Lett. 7(1), 1–10 (1986).
M. Adimy and K. Ezzinbi, “Local existence and linearized stability for partial functional-differential equations,” Dynam. Systems Appl. 7(3), 389–403 (1998).
M. Adimy and K. Ezzinbi, “A class of linear partial neutral functional-differential equations with nondense domain,” J. Differential Equations 147(2), 285–332 (1998).
J. K. Hale, Functional Differential Equations, in Appl. Math. Sci. (Springer-Verlag, New York, 1971), Vol. 3.
J. K. Hale and S. M. Verduyn Lunel, “Strong stabilization of neutral functional differential equations,” IMA J.Math. Control Inform. 19(1–2), 5–23 (2002).
O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations. Functional-, Complex-, and Nonlinear Analysis, in Appl. Math. Sci. (Springer-Verlag, Berlin, 1995), Vol. 110.
W. Michiels and T. Vyhlídal, “An eigenvalue based approach for the stabilization of linear time-delay systems of neutral type,” Automatica J. IFAC 41(6), 991–998 (2005).
H. H. Schaefer, Banach Lattices and Positive Operators, in Grundlehren Math. Wiss. (Springer-Verlag, Berlin, 1974), Vol. 215.
P. Meyer-Nieberg, Banach Lattices, in Universitext (Springer-Verlag, Berlin, 1991).
A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces (Springer-Verlag, Berlin, 1977).
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in Russian in Matematicheskie Zametki, 2010, Vol. 88, No. 5, pp. 651–661.
The text was submitted by the authors in English.
Rights and permissions
About this article
Cite this article
Anh, B.T., Son, N.K. Robust stability of a class of positive quasi-polynomials in Banach spaces. Math Notes 88, 626–636 (2010). https://doi.org/10.1134/S0001434610110027
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0001434610110027