Skip to main content
Log in

Determination of periods of geometric continued fractions for two-dimensional algebraic hyperbolic operators

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

An explicit construction of a reduced hyperbolic integer operator from the group SL(2, ℤ) such that one of the periods of the corresponding geometric continued fraction in the sense of Klein coincides with a given sequence of positive integers is presented. An algorithm determining periods for any operator in SL(2, ℤ) (which is based on Gauss’ reduction theory) is experimentally studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lewis and D. Zagier, “Period functions and the Selberg zeta function for the modular group,” in Adv. Ser. Math. Phys., Vol. 24: The Mathematical Beauty of Physics (World Sci., River Edge, N. J., 1997), pp. 83–97.

    Google Scholar 

  2. V. I. Arnold, Arnold’s Problems (Springer-Verlag, Berlin, 2005; Fazis, Moscow, 2000).

    Book  Google Scholar 

  3. V. I. Arnold, Continued Fractions (MTsNMO, Moscow, 2002) [in Russian].

    Google Scholar 

  4. M. Pavlovskaya, Continued Fraction Expansions of Matrix Eigenvectors, Preprint (2007).

  5. M. O. Avdeeva and V. A. Bykovskii, Solution of Arnold’s Problem about Gauss-Kuz’min Statistics, Preprint No. 08, Far-East Division, Russian Academy of Sciences (Dal’nauka, Vladivostok, 2002).

    Google Scholar 

  6. M. O. Avdeeva, “On the statistics of partial quotients of finite continued fractions,” Funktsional. Anal. i Prilozhen. 38(2), 1–11 (2004) [Functional Anal. Appl. 38 (2), 79–87 (2004)].

    Article  MathSciNet  Google Scholar 

  7. V. I. Arnold, “Arithmetics of perfect quadratic forms, symmetry of their continuous fractions, and geometry of their de Sitter world,” in Proceedings of the Summer School “Modern MATHEMATICS”: General Lectures, Dubna, Russia, July 16–28, 2002; http://www.mccme.ru/dubna/2002/material.htm [in Russian].

  8. S. Katok, Continued Fractions, Hyperbolic Geometry and Quadratic Forms, Course Notes for MATH 497A REU Program, Summer 2001, http://www.math.psu.edu/katok_s/pub/reu-book.ps

  9. Dean R. Hickerson, “Length of period of simple continued fraction expansion of √d,” Pacific J. Math. 46(2), 429–432 (1973).

    MATH  MathSciNet  Google Scholar 

  10. F. Klein, “Ueber eine geometrische Auffassung der gewöhnlichen Kettenbruchentwickelung,” Gott. Nachr. 3, 357–359 (1895).

    Google Scholar 

  11. F. Klein, “Sur une représentation géométrique du développement en fraction continue ordinaire,” Nouv. Ann. (3) 15, 327–331 (1896).

    Google Scholar 

  12. E. I. Korkina, “Two-dimensional continued fractions. The simplest examples,” in Trudy Mat. Inst. Steklov, Vol. 209: Singularities of Smooth Mappings with Additional Structures: Collection of Papers (Nauka, Moscow, 1995), pp. 143–166 [Proc. Steklov Inst.Math. 209, 124–144 (1995)].

    Google Scholar 

  13. J.-O. Moussafir, Voiles et Polyèdres de Klein. Géométrie, Algorithmes et Statistiques, Docteur en sciences thése (Université Paris IX, Dauphine, 2000), http://www.ceremade.dauphine.fr/_msfr/.

    Google Scholar 

  14. O. N. Karpenkov, “On the triangulations of tori associated with two-dimensional continued fractions of cubic irrationalities,” Funktsional. Anal. i Prilozhen. 38(2), 28–37 (2004) [Functional Anal. Appl. 38 (2), 102–110 (2004)].

    Article  MathSciNet  Google Scholar 

  15. G. Lachaud, Voiles et Polyèdres de Klein, Preprint No. 95-22 (Laboratoire de Mathématiques Discrètes du C. N. R. S., Luminy, 1995).

    Google Scholar 

  16. O. Karpenkov, Elementary Notions of Lattice Trigonometry, arXiv: math. CO/0604129.

  17. Z. I. Borevich and I. R. Shafarevich, Number Theory, 3rd ed. (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  18. Yu. I. Manin and M. Marcolli, Continued Fractions, Modular Symbols, and Non-Commutative Geometry, arXiv: math. NT/0102006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Karpenkov.

Additional information

Original Russian Text © O. N. Karpenkov, 2010, published in Matematicheskie Zametki, 2010, Vol. 88, No. 1, pp. 30–42.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karpenkov, O.N. Determination of periods of geometric continued fractions for two-dimensional algebraic hyperbolic operators. Math Notes 88, 28–38 (2010). https://doi.org/10.1134/S0001434610070035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434610070035

Key words

Navigation