Skip to main content
Log in

Convergence parameter associated with a Markov chain and a family of functions

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The proposed definition of convergence parameter R(W) corresponding to a Markov chain X with a measurable state space (E,ℬ) and any nonempty setW of bounded below measurable functions f: E → ℝ is wider than the well-known definition of convergence parameter R in the sense of Tweedie or Nummelin. Very often, R(W) < ∞, and there exists a set playing the role of the absorbing set inNummelin’s definition ofR. Special attention is paid to the case in whichE is locally compact, X is a Feller chain on E, and W coincides with the family ℰ +0 of all compactly supported continuous functions f ≥ 0 (f ≇ 0). In particular, certain conditions for R(ℰ +0 )−1 to coincide with the norm of an appropriate modification of the chain transition operator are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Vere-Jones, “Geometric ergodicity in denumerable Markov chains,” Quart. J. Math. Oxford Ser. (2) 13(1), 7–28 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  2. R. L. Tweedie, “R-theory for Markov chains on a general state space. I. Solidarity properties and R-recurrent chains,” Ann. Probab. 2(5), 840–864 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Nummelin, General Irreducible Markov Chains and Non-Negative Operators, in Cambridge Tracts in Math. (Cambridge Univ. Press, Cambridge, 1984), Vol. 83.

    Google Scholar 

  4. V. M. Shurenkov, Ergodic Markov Processes, in Probability Theory and Mathematical Statistics (Nauka, Moscow, 1989), Vol. 41 [in Russian].

    Google Scholar 

  5. W. Woess, “Random walks on infinite graphs and groups — a survey on selected topics,” Bull. London Math. Soc. 26(1), 1–60 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  6. M. G. Shur, “Asymptotic properties of positive operator powers. I,” Teor. Veroyatnost. i Primenen. 29(4), 692–702 (1984) [Theory Probab. Appl. 29 (4), 719–730 (1985)].

    MATH  MathSciNet  Google Scholar 

  7. M. G. Shur, “On the Lin condition in strong ratio limit theorems,” Mat. Zametki 75(6), 927–940 (2004) [Math. Notes 75 (6), 864–876 (2004)].

    MathSciNet  Google Scholar 

  8. A. L. T. Paterson, Amenability, in Math. Surveys Monogr. (Amer. Math. Soc., Providence, RI, 1998), Vol. 29.

    Google Scholar 

  9. S. Orey, Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities, in Van Nostrand Reinhold Math. Stud. (Van Nostrand Reinhold Co., London-New York, 1971), Vol. 34.

    Google Scholar 

  10. D. Revuz, Markov Chains (North-Holland, Amsterdam-New York-Oxford, 1984; RFFI,Moscow, 1997).

    MATH  Google Scholar 

  11. A. V. Skorokhod, “Topologically recurrent Markov chains. Ergodic properties,” Teor. Veroyatnost. i Primenen. 31(4), 641–650 (1986) [Theory Probab. Appl. 31 (4), 563–571 (1987).

    MATH  MathSciNet  Google Scholar 

  12. E. Hewitt and K. Ross, Abstract Harmonic Analysis, Vol. 1: Structure of Topological Groups. Integration Theory. Group Representations (Springer-Verlag, Berlin-Gottingen-Heidelberg, 1963; Nauka, Moscow, 1975).

    Google Scholar 

  13. K. Parthasarathy, Introduction to Probability and Measure (McMillan, Deli, 1980; Mir,Moscow, 1983).

    Google Scholar 

  14. M. G. Shur, “Ratio limit theorems for self-adjoint operators and symmetric Markov chains,” Teor. Veroyatnost. i Primenen. 45(2), 268–288 (2000) [Theory Probab. Appl. 45 (2), 273–288 (2001)].

    MathSciNet  Google Scholar 

  15. K. Iosida, Functional Analysis (West Berlin, 1965;Mir,Moscow, 1967).

  16. D. B. Pollard and R. L. Tweedie, “R-theory for Markov chains on a topological state space. II,” Z.Wahrsch. Verw. Gebiete 34(4), 269–278 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  17. R. A. Aleksandryan and É. A. Mirzakhanyan, General Topology, textbook for universities (Vysshaya Shkola, Moscow, 1979) [in Russian].

    MATH  Google Scholar 

  18. M. G. Shur, “On the theorem on asymptotic equidistribution of the convolution powers of symmetric measures on a unimodular group,” Mat. Zametki 60(1), 120–126 (1996) [Math. Notes 60 (1–2), 89–93 (1996)].

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M. G. Shur, 2010, published in Matematicheskie Zametki, 2010, Vol. 87, No. 2, pp. 294–304.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shur, M.G. Convergence parameter associated with a Markov chain and a family of functions. Math Notes 87, 271–280 (2010). https://doi.org/10.1134/S0001434610010347

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434610010347

Key words

Navigation