Skip to main content
Log in

A generalization of the Men’shov-Rademacher theorem

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

For a sequence “X n n≥1 of random variables with finite second moment and a sequence “b n n≥1 of positive constants, new sufficient conditions for the almost sure convergence of Σn≥1 X n /b n are obtained and the strong law of large numbers, which states that lim n→∞ Σ nk=1 X k /b n = 0 almost surely, is proved. The results are shown to be optimal in a number of cases. In the theorems, assumptions have the form of conditions on ρ n = sup k (EX k X k+n)+,

$$ r_n = \mathop {\sup }\limits_k \frac{{\left( {EX_k X_{k + n} } \right)^ + }} {{\left( {EX_k^2 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \left( {EX_{k + n}^2 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }} $$

, EX 2 n , and b n , where x + = x ∨ 0 and n ∈ ℕ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sh. Levental’, Kh. Salekhi, and S. A. Chobanyan, “General maximal inequalities related to the strong law of large numbers.” Mat. Zametki 81(1), 98–111 (2007) [Math. Notes 81 (1–2), 85–96 (2007)].

    MathSciNet  Google Scholar 

  2. F. Móricz, “The strong laws of large numbers for quasi-stationary sequences,” Z.Wahrsch. Verw.Gebiete 38(3), 223–236 (1977).

    Article  MATH  Google Scholar 

  3. V. F. Gaposhkin, “Criteria for the strong law of large numbers for some classes of weakly stationary processes and homogeneous random fields,” Teor. Veroyatnost. Primenen. 22(2), 295–319 (1977).

    Google Scholar 

  4. V. F. Gaposhkin, “Convergence of series that are connected with stationary sequences,” Izv. Akad. Nauk SSSR Ser. Mat. 39(6), 1366–1392 (1975).

    MATH  MathSciNet  Google Scholar 

  5. R. J. Serfling, “On the strong law of large numbers and related results for quasistationary sequences,” Teor. Veroyatnost. Primenen. 25(1), 190–194 (1980).

    MATH  MathSciNet  Google Scholar 

  6. V. F. Gaposhkin, “On the growth order of partial sums of nonorthogonal series,” Anal.Math. 6(2), 105–119 (1980).

    Article  MathSciNet  Google Scholar 

  7. T.-C. Hu, A. Rosalsky and A. Volodin, “On convergence properties of sums of dependent random variables under second moment and covariance restrictions,” Statist. Probab. Lett. 78(14), 1999–2005 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  8. S. H. Sung, “Maximal inequalities for dependent random variables and applications,” J. Inequal. Appl., Art. ID 598319 (2008).

  9. H. Walk, “Almost sure Cesàro and Euler summability of sequences of dependent random variables,” Arch. Math. (Basel) 89(5), 466–480 (2007).

    MATH  MathSciNet  Google Scholar 

  10. F. Móricz, “SLLN and convergence rates for nearly orthogonal sequences of random variables,” Proc. Amer. Math. Soc. 95(2), 287–294 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  11. I. Fazekas and O. Klesov, “A general approach to the strong laws of large numbers,” Teor. Veroyatnost. Primenen. 45(3), 568–583 (2000) [Theory Probab. Appl. 45 (3), 436–449 (2002)].

    MathSciNet  Google Scholar 

  12. G. Cohen and M. Lin, “Extensions of the Menchoff-Rademacher theorem with applications to ergodic theory,” Israel J. Math. 148(1), 41–86 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  13. B. S. Kashin and A. A. Saakyan, Orthogonal Series, 2nd ed. (Izd. AFTs, Moscow, 1999) [in Russian].

    Google Scholar 

  14. F. Móricz and K. Tandori, “Counterexamples in the theory of orthogonal series,” Acta Math. Hungar. 49(1–2), 283–290 (1987).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Yas’kov.

Additional information

Original Russian Text © P. A. Yas’kov, 2009, published in Matematicheskie Zametki, 2009, Vol. 86, No. 6, pp. 925–937.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yas’kov, P.A. A generalization of the Men’shov-Rademacher theorem. Math Notes 86, 861–872 (2009). https://doi.org/10.1134/S0001434609110285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434609110285

Key words

Navigation