Skip to main content
Log in

A formal Frobenius theorem and argument shift

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

A formal Frobenius theorem, which is an analog of the classical integrability theorem for smooth distributions, is proved and applied to generalize the argument shift method of A. S. Mishchenko and A. T. Fomenko to finite-dimensional Lie algebras over any field of characteristic zero. A completeness criterion for a commutative set of polynomials constructed by the formal argument shift method is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. S. Mishchenko and A. T. Fomenko, “Integration of Hamiltonian systems with noncommutative symmetries,” Tr. Semin. Vektor. Tenzor. Anal. 20, 5–54 (1981).

    MathSciNet  Google Scholar 

  2. A. S. Mishchenko and A. T. Fomenko, “Euler equation on finite-dimensional Lie groups,” Izv. Akad. Nauk SSSR Ser. Mat. 42(2), 396–415 (1978) [Math. USSR-Izv. 12 (2), 371–389 (1978)].

    MATH  MathSciNet  Google Scholar 

  3. S. T. Sadétov, “A proof of the Mishchenko-Fomenko conjecture,” Dokl. Akad. Nauk 397(6), 751–754 (2004) [Dokl.Math. 70 (1), 635–638 (2004)].

    MathSciNet  Google Scholar 

  4. A. V. Bolsinov, “Complete involutive sets of polynomials in Poisson algebras: A proof of the Mishchenko-Fomenko conjecture,” Tr. Semin. Vektor.Tenzor.Anal. 26, 87–109 (2005).

    MATH  Google Scholar 

  5. A. V. Bolsinov, “A completeness criterion for a family of functions in involution constructed by the argument shift method,” Dokl. Akad. Nauk SSSR 301(5), 1037–1040 (1988) [Sov. Math. Dokl. 38 (1), 161–165 (1989)].

    Google Scholar 

  6. A. V. Bolsinov, “Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution,” Izv. Akad.Nauk SSSR Ser. Mat. 55(1), 68–92 (1991) [Math. USSR-Izv. 38 (1), 69–90 (1992)].

    MATH  MathSciNet  Google Scholar 

  7. S. Sternberg, Lectures on Differential Geometry (Prentice-Hall, Englewood-Cliffs, NJ, 1964; Mir, Moscow, 1970).

    MATH  Google Scholar 

  8. J. Praught and R. G. Smirnov, “Andrew Lenard: A mystery unraveled,” SIGMA Symmetry Integrability Geom. Methods Appl. 1, Paper 005, electronic (2005).

  9. I. M. Gelfand and I. Zakharevich,Webs, Lenard schemes, and the Local Geometry of Bihamiltonian Toda and Lax Structures, arXiv: math. DG/9903080.

  10. I. M. Gel’fand and I. S. Zakharevich, “Spectral theory of a pencil of skew-symmetric differential operators of third order on S 1,” Funktsional. Anal. i Prilozhen. 23(2), 1–11 (1989) [Functional Anal. Appl. 23 (2), 85–93 (1989)].

    MathSciNet  Google Scholar 

  11. R. C. Thompson, “Pencils of complex and real symmetric and skew matrices,” Linear Algebra Appl. 147, 323–371 (1991).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bolsinov.

Additional information

Original Russian Text © A. V. Bolsinov, K. M. Zuev, 2009, published in Matematicheskie Zametki, 2009, Vol. 86, No. 1, pp. 3–13.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolsinov, A.V., Zuev, K.M. A formal Frobenius theorem and argument shift. Math Notes 86, 10–18 (2009). https://doi.org/10.1134/S0001434609070025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434609070025

Key words

Navigation