Skip to main content
Log in

Topological splines in locally convex spaces

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

In the present paper, we propose a new approximation method in different function spaces. A specific feature of this method is that the choice of the basis approximating elements significantly depends on the topology of the given function space. Basis elements are constructed using the duality theory of locally convex spaces. A method of their exact calculation is presented. The approximating constructions are far-reaching generalizations of the classical Schoenberg splines and, by analogy with the latter, may be called topological splines. In the general case, such a definition of splines is not related to the choice of the grid. In this paper, we give many examples that are useful for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Kolesnikov, “Algebraic splines in locally convex spaces,” Mat. Zametki 77(3), 339–353 (2005) [Math. Notes 77 (3), 311–325 (2005)].

    MathSciNet  Google Scholar 

  2. M. Day, Normed Linear Spaces (Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958; Inostr. Lit., Moscow, 1961).

    MATH  Google Scholar 

  3. R. Edwards, Functional analysis: Theory and Applications (New York, 1965; Mir, Moscow, 1969).

    MATH  Google Scholar 

  4. H. Schaefer, Topological Vector Spaces (Macmillan, New York, 1966; Mir, Moscow, 1971).

    MATH  Google Scholar 

  5. W. Rudin, Principles of Mathematical Analysis (McGraw-Hill, New York, 1973; Mir, Moscow, 1975).

    Google Scholar 

  6. A. Robertson and W. Robertson, Topological Vector Spaces (Cambridge University Press, New York, 1964; Mir, Moscow, 1967).

    MATH  Google Scholar 

  7. A. P. Kolesnikov, Functional Splines in Topological Vector Spaces (Izd. URSS, Moscow, 2008) [in Russian].

    Google Scholar 

  8. P. Halmos, Measure Theory (New York, 1950; Mir, Moscow, 1970).

    Google Scholar 

  9. N. Bourbaki, Éléments de mathématique. Livre VI Intégration (Hermann, Paris, 1965; Nauka, Moscow, 1967).

    MATH  Google Scholar 

  10. P. Billingsley, Convergence of Probability Measures (J. Wiley, New York-London, 1968; Nauka, Moscow, 1967).

    MATH  Google Scholar 

  11. N. Dunford and J. T. Schwartz, Linear Operators: General Theory (Interscience Publ., New York-London, 1958; Inostr. Lit., Moscow, 1962).

    MATH  Google Scholar 

  12. L. V. Kantorovich and G. P. Akilov, Functional Analysis (Nauka, Moscow, 1984).

    MATH  Google Scholar 

  13. B. Z. Vulikh, A Short Course in the Theory of Functions of a Real Variable: An Introduction to the Theory of the Integral (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  14. I. P. Natanson, Theory of Functions of a Real Variable (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  15. L. Schwartz, Analyse Mathématique (Hermann, Paris, 1967; Mir, Moscow, 1972).

    MATH  Google Scholar 

  16. S. Bernstein, “Sur l’interpolation,” Bull. Soc. Math. France 33, 33–36 (1905).

    MATH  MathSciNet  Google Scholar 

  17. G. I. Marchuk and V. I. Agoshkov, Introduction to Projection-Grid Methods (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

  18. A. P. Kolesnikov, Topological Methods in Approximation Theory and Numerical Analysis (Izd. URSS, Moscow, 2001) [in Russian].

    Google Scholar 

  19. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Ed. by M. Abramowitz and I. Stegun (National Bureau of Standards, Washington, D. C., 1964; Nauka, Moscow,1979).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Kolesnikov.

Additional information

Original Russian Text © A. P. Kolesnikov, 2009, published in Matematicheskie Zametki, 2009, Vol. 85, No. 6, pp. 857–885.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesnikov, A.P. Topological splines in locally convex spaces. Math Notes 85, 814–840 (2009). https://doi.org/10.1134/S0001434609050241

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434609050241

Key words

Navigation