Skip to main content
Log in

Asymptotic behavior of the eigenvalues of the Schrödinger operator in thin closed tubes

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

In the present paper, we obtain an asymptotic expansion of the eigenvalues of the Schrödinger operator with the magnetic field taken into account and with zero Dirichlet conditions in closed tubes, i.e., in closed curved cylinders with intrinsic torsion under uniform compression of the transverse cross-sections, with respect to a small parameter characterizing the tube’s transverse dimensions. We propose a method for reducing the eigenvalue problem to the problem of solving an implicit equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Maslov, “An asymptotic expression for the eigenfunctions of the equation Δu + k 2 u = 0 with boundary conditions on equidistant curves and the scattering of electromagnetic waves in a waveguide,” Dokl. Akad. Nauk SSSR 123(3), 631–633 (1958) [Soviet Phys. Dokl. 3, 1132–1135 (1959)].

    Google Scholar 

  2. V. P. Maslov, “Mathematical aspects of integral optics,” Russ. J. Math. Phys. 8(1), 83–105 (2001).

    MATH  MathSciNet  Google Scholar 

  3. V. P. Maslov and E. M. Vorob’ev, “On single-mode open resonators,” Dokl. Akad. Nauk SSSR 179(3), 558–561 (1968).

    Google Scholar 

  4. V. V. Belov, S. Yu. Dobrokhotov, and S. O. Sinitsyn, “Asymptotic solutions of the Schrödinger equation in thin tubes,” Trudy Inst. Matem. Mekh. Ural Otd. RAS 9(1), 1–11 (2003).

    MathSciNet  Google Scholar 

  5. V. V. Belov, S. Yu. Dobrokhotov, S. O. Sinitsyn, and T. Y. Tudorovskii, “Semiclassical approximation and the canonical Maslov operator for nonrelativistic equations of quantum mechanics in nanotubes,” Dokl. Ross. Akad. Nauk 393(4), 460–464 (2003) [Russian Acad. Sci. Dokl. Math.].

    MathSciNet  Google Scholar 

  6. V. V. Belov, S. Yu. Dobrokhotov, and T. Ya. Tudorovskii, “Quantum and classical dynamics of electron in thin curved tubes with spin and external electromagnetic fields taken into account,” Russ. J. Math. Phys. 11(1), 109–118 (2004).

    MATH  MathSciNet  Google Scholar 

  7. V. V. Belov, S. Yu. Dobrokhotov, and T. Y. Tudorovskii, “Asymptotic solutions of nonrelativistic equations of quantum mechanics in curved nanotubes. I. Reduction to spatially one-dimensional equations,” Teoret. Mat. Fiz. 141(2), 267–303 (2004) [Theoret. and Math. Phys. 141 (2), 1562–1592 (2004)].

    MathSciNet  Google Scholar 

  8. V. V. Belov, S. Yu. Dobrokhotov, V. P. Maslov, and T. Y. Tudorovskii, “Generalized adiabatic principle for describing the electron dynamics in curved nanotubes,” Uspekhi Fiz. Nauk 175(9), 1004–1010 (2005) [Soviet Phys. Uspekhi].

    Article  Google Scholar 

  9. P. Duclos and P. Exner, “Curvature-induced bound states in quantum waveguides in two and three dimensions,” Rev. Math. Phys. 7(1), 73–102 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Exner and P. Šeba, “Bound states in curved quantum waveguides,” J. Math. Phys. 30(11), 2574–2580 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Exner, “Bound states in quantum waveguides of a slowly decaying curvature,” J. Math. Phys. 34(1), 23–28 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  12. W. Bulla, F. Gesztesy, W. Renger, and B. Simon, “Weakly coupled bound states in quantum waveguides,” Proc. Amer. Math. Soc. 125(2), 1487–1495 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Exner and S. A. Vugalter, “Bounds states in a locally deformed waveguide: the critical value,” Lett. Math. Phys. 39(1), 59–68 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Borisov, P. Exner, R. Gadyl’shin, and D. Krejčiřík, “Bound states in a weakly deformed strips and layers,” Ann. Henri Poincaré 2(3), 553–572 (2001).

    Article  MATH  Google Scholar 

  15. V. V. Grushin, “On the eigenvalues of finitely perturbed Laplace operators in infinite cylindrical domains,” Mat. Zametki 75(3), 360–371 (2004) [Math. Notes 75 (3–4), 331–340 (2004)].

    MathSciNet  Google Scholar 

  16. V. V. Grushin, “Asymptotic behavior of the eigenvalues of the Schrödinger operator with transversal potential in a weakly curved infinite cylinder,” Mat. Zametki 77(5), 656–664 (2005) [Math. Notes 77 (5–6), 606–613 (2005)].

    MathSciNet  Google Scholar 

  17. V. V. Grushin, “Asymptotic behavior of the eigenvalues of the Laplace operator in infinite cylinders perturbed by transverse extensions,” Mat. Zametki 81(3), 328–334 (2007) [Math. Notes 81 (3–4), 291–296 (2007)].

    MathSciNet  Google Scholar 

  18. V. V. Grushin, “Asymptotic behavior of the eigenvalues of the Laplace operator in thin infinite tubes,” Mat. Zametki (in press).

  19. R. R. Gadyl’shin, “On local perturbations of quantum waveguides,” Teoret. Mat. Fiz. 145(3), 358–371 (2005) [Theoret. and Math. Phys. 145 (3), 1678–1690 (2005)].

    MathSciNet  Google Scholar 

  20. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, in Travaux et recherches mathématiques, Vol. 18 (Dunod, Paris, 1968; Mir, Moscow, 1971).

    Google Scholar 

  21. L. Hörmander, Linear Partial Differential Operators, in Die Grundlehren der mathematischen Wissenschaften, Vol. 116 (Springer-Verlag, Berlin, 1963; Mir, Moscow, 1965).

    Google Scholar 

  22. L. I. Magarill and M. V. Entin, “Electrons in curvilinear quantum wire,” Zh. Éxper. Teoret. Fiz. 123(4), 867–876 (2003).

    Google Scholar 

  23. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. IV: Analysis of Operators (Academic Press, New York, 1978; Mir, Moscow, 1982).

    Google Scholar 

  24. M. S. Agranovich and M. I. Vishik, “Elliptic problems with a parameter and parabolic of general type,” Uspekhi Mat. Nauk 19(3), 53–161 (1964).

    MATH  Google Scholar 

  25. V. V. Grushin, “On a class of elliptic pseudodifferential operators degenerate on a submanifold,” Mat. Sb. 84(2), 163–195 (1971) [Math. USSR-Sb. 13, 155–185 (1971)].

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Grushin.

Additional information

Original Russian Text © V. V. Grushin, 2008, published in Matematicheskie Zametki, 2008, Vol. 83, No. 4, pp. 503–519.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grushin, V.V. Asymptotic behavior of the eigenvalues of the Schrödinger operator in thin closed tubes. Math Notes 83, 463–477 (2008). https://doi.org/10.1134/S000143460803019X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143460803019X

Key words

Navigation