Skip to main content
Log in

Feynman formulas and functional integrals for diffusion with drift in a domain on a manifold

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We obtain representations for the solution of the Cauchy-Dirichlet problem for the diffusion equation with drift in a domain on a compact Riemannian manifold as limits of integrals over the Cartesian powers of the domain; the integrands are elementary functions depending on the geometric characteristics of the manifold, the coefficients of the equation, and the initial data. It is natural to call such representations Feynman formulas. Besides, we obtain representations for the solution of the Cauchy-Dirichlet problem for the diffusion equation with drift in a domain on a compact Riemannian manifold as functional integrals with respect to Weizsäcker-Smolyanov surface measures and the restriction of the Wiener measure to the set of trajectories in the domain; such a restriction of the measure corresponds to Brownian motion in a domain with absorbing boundary. In the proof, we use Chernoff’s theorem and asymptotic estimates obtained in the papers of Smolyanov, Weizsäcker, and their coauthors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. G. Smolyanov, H. v. Weizsäcker, and O. Wittich, “Brownian motion on a manifold as limit of stepwise conditioned standard Brownian motions,” in Stochastic Processes, Physics, and Geometry: New Interplays, CMS Conf. Proc., II, Leipzig, 1999 (Amer. Math. Soc., Providence, RI, 2000), Vol. 29, pp. 589–602.

    Google Scholar 

  2. O. G. Smolyanov, H. v. Weizsäcker, and O. Wittich, Chernoff’s Theorem and Discrete Time Approximations of Brownian Motion on Manifolds, arXiv: math/0409155.

  3. O. G. Smolyanov, H. v. Weizsäcker, and O. Wittich, “Chernoff’s Theorem and the construction of semigroups,” in Evolution Equations: Applications to Physics, Industry, Life Sciences, and Economics, Progr. Nonlinear Differential Equations Appl., Levico Terme, 2000 (Birkhäuser, Basel, 2003), pp. 349–358.

    Google Scholar 

  4. O. G. Smolyanov, H. v. Weizsäcker, and O. Wittich, “Diffusion on compact Riemannian manifolds and surface measures,” Dokl. Ross. Akad. Nauk 371(4), 442–447 (2000) [Russian Acad. Sci. Dokl. Math. 61 (2), 230–234 (2000)].

    Google Scholar 

  5. O. G. Smolyanov, H. v. Weizsäcker, O. Wittich, and N. A. Sidorova, “Surface measures on trajectories in Riemannian manifolds generated by diffusions,” Dokl. Ross. Akad. Nauk 377(4), 441–446 (2001) [Russian Acad. Sci. Dokl. Math. 63 (2), 203–207 (2001)].

    Google Scholar 

  6. O. G. Smolyanov, H. v. Weizsäcker, O. Wittich, and N. A. Sidorova, “Wiener surface measures on trajectories in Riemannian manifolds,” on the trajectories in the Riemannian manifolds,” Dokl. Ross. Akad. Nauk 383(4), 458–463 (2002) [Russian Acad. Sci. Dokl. Math. 65 (2), 239–244 (2002)].

    Google Scholar 

  7. R. P. Chernoff, “Note on product formulas for operator semigroups,” J. Funct. Anal. 2(2), 238–242 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  8. R. P. Chernoff, Product Formulas, Nonlinear Semigroups, and Addition of Unbounded Operators, in Mem. Amer. Math. Soc. (Amer. Math. Soc., Providence, RI, 1974), Vol. 140.

    Google Scholar 

  9. E. Nelson, “Feynman Integrals and the Schrödinger Equation,” J. Math. Phys. 5(3), 332–343 (1964).

    Article  MATH  Google Scholar 

  10. N. A. Sidorova, “The Smolyanov surface measure on trajectories in a Riemannian manifold,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 7(3), 461–471 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Nash, “C 1 isometric embeddings,” [J] Ann. Math. 60(2), 383–396 (1954).

    Article  MathSciNet  Google Scholar 

  12. J. Nash, “The embedding problem for Riemannian manifolds,” Uspekhi Mat. Nauk 26(4), 173–216 (1971).

    MATH  MathSciNet  Google Scholar 

  13. L. Andersson and B. K. Driver, “Finite-dimensional approximations to Wiener measure and path integral formulas on manifolds,” J. Func. Anal. 165(2), 430–498 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  14. B. K. Driver, A Primer on Riemannian Geometry and Stochastic Analysis on Path Spaces, http://math.ucsd.edu/:_driver/DRIVER/Preprints/stochastic_geometry.htm.

  15. S. Watanabe and N. Ikeda, Stochastic Differential Equations and Diffusion Processes (North-Holland, Amsterdam-Oxford-New York, 1981; Nauka, Moscow, 1986).

    MATH  Google Scholar 

  16. O. G. Smolyanov and A. Truman, “Feynman integrals over trajectories in Riemannian manifolds,” Dokl. Ross. Akad. Nauk 392(2), 174–179 (2003).

    MathSciNet  Google Scholar 

  17. O. G. Smolyanov, A. G. Tokarev, and A. Truman, “Hamiltonian Feynman path integrals via Chernoff formula,” J. Math. Phys. 43(10), 5161–5171 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  18. K. D. Elworthy, Stochastic Differential Equations on Manifolds, in London Math. Soc. Lecture Note Ser. (Cambridge Univ. Press, Cambridge, 1982), Vol. 70.

    Google Scholar 

  19. Ya. A. Butko, “Representations of the solution of the Cauchy-Dirichlet problem for the heat equation in a domain on a compact Riemannian manifold by functional integrals,” Russ. J. Math. Phys. 11(2), 121–129 (2004).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Butko.

Additional information

Original Russian Text © Y. A. Butko, 2008, published in Matematicheskie Zametki, 2008, Vol. 83, No. 3, pp. 333–349.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butko, Y.A. Feynman formulas and functional integrals for diffusion with drift in a domain on a manifold. Math Notes 83, 301–316 (2008). https://doi.org/10.1134/S0001434608030024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434608030024

Key words

Navigation