Skip to main content
Log in

Hausdorff dimension of Lebesgue sets for W p α classes on metric spaces

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Let (X, μ, d) be a space of homogeneous type, where d and p are a metric and a measure, respectively, related to each other by the doubling condition with γ > 0. Let W pα (X) be generalized Sobolev classes, let Capα p (where p > 1 and 0 < α ≤ 1) be the corresponding capacity, and let dimH be the Hausdorff dimension. We show that the capacity Capα p is related to the Hausdorff dimension; we also prove that, for each function u ∈ W α/p (X), p > 1, 0 < a < γ/p, there exists a set E ⊂ X such that dim H (E) ≤ γ - αp, the limit

$$\mathop {\lim }\limits_{r \to + 0} \frac{1}{{\mu (B(x,r))}}\int_{B(x,r)} {u d\mu = u * (x)} $$

exists for each xX\E, and moreover

$$\mathop {\lim }\limits_{r \to + 0} \frac{1}{{\mu (B(x,r))}}\int_{B(x,r)} {\left| {u - u * (x)} \right|^q d\mu = 0, \frac{1}{q} = \frac{1}{p} - \frac{\alpha }{\gamma }.} $$

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Coifman and G. Weiss, “Analyse harmonique non-commutative sur certain espaces homogenes,” in Lecture Notes in Math., v. 242 (Springer-Verlag, Berlin-Heidelberg-New York, 1971).

    Google Scholar 

  2. R. R. Coifman and G. Weiss, “Extensions of Hardy spaces and their use in analysis,” Bull. Amer. Math. Soc. 83(4), 569–645(1977).

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Hajiasz, “Sobolev spaces on an arbitrary metric spaces,” Potential Anal. 5(4), 403–415(1996).

    MathSciNet  Google Scholar 

  4. P. Hajlasz and P. Koskela, Sobolev met Poincaré, in Mem. Amer. Math. Soc. (American Mathematical Society, Providence, RI, 2000), Vol. 145, 688.

    Google Scholar 

  5. J. Heinonen, Lectures on Analysis on Metric Spaces, in Universitext (Springer-Verlag, New York, 2001).

    Google Scholar 

  6. J. Hu, “A note on Hajlasz-Sobolev spaces on fractals,” J. Math. Anal. Appl. 280 (1), 91–101 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Yang, “New haracterization of Hajtasz-Sobolev spaces on metric spaces,” Sci. China Sen A 46 (5), 675–689(2003).

    Article  MATH  Google Scholar 

  8. I. A. Ivanishko, “Generalized Sobolev classes on metric measure spaces,” Mat. Zametki 77 (6), 937–941 (2005) [Math. Notes 77 (5–6), 865–869 (2005)].

    MathSciNet  Google Scholar 

  9. J. Kinnunen and O. Martio, “The Sobolev capacity on metric spaces,” Ann. Acad. Sci. Fenn. Math. 21 (2), 367–382(1996).

    MATH  MathSciNet  Google Scholar 

  10. J. Kinnunen and V. Latvala, “Lebesgue points for Sobolev functions on metric spaces,” Rev. Mat. Iberoamericana 18 (3), 685–700 (2002).

    MATH  MathSciNet  Google Scholar 

  11. P. Hajiasz and J. Kinnunen, “Hölder qasicontinuity of Sobolev functions on metric spaces,” Rev. Mat. Iberoamericana 14 (3), 601–622 (1998).

    MathSciNet  Google Scholar 

  12. M. A. Prokhorovich, “Capacities and Lebesgue points for Hajtasz-Sobolev fractional classes on metric measure spaces,” VestsīNats. Akad. Navuk BelarusīSer. Fīz.-Mat. Navuk, No. 1, 19–23 (2006).

  13. M. A. Prokhorovich, “Hausdorff capacities and dimension of the set of Lebesgue points for functions in Sobolev classes on spaces of homogeneous type,” in Contemporary Problems in Function Theory and Their Applications, Abstracts of Talks at the 13th Saratov Winter School (Saratov, 2006), pp. 146–147 [in Russian].

    Google Scholar 

  14. H. Federer, Geometric Measure Theory, in Die Grundlehren der mathematischen Wissenschaften (Springer-Verlag, Berlin-Heidelberg-NewYork, 1969), Vol. 153.

    Google Scholar 

  15. D. R. Adams and L. I. Hedberg, “Function spaces and potential theory,” in Grundlehren der Mathematischen Wissenschaften (Springer-Verlag, Berlin-Heidelberg-New York, 1996), Vol. 314.

    Google Scholar 

  16. I. A. Ivanishko and V. G. Krotov, “A generalized Poincaré-Sobolev inequality on metric spaces with measure,” Tr. In-ta Matem. NAN Belarusi 14(1) (2006).

  17. E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, in Princeton Mathematical Series (Princeton Univ. Press, Princeton, NJ, 1993), Vol. 43.

    Google Scholar 

  18. T. Bagby and W. P. Ziemer, “Pointwise differentiablity and absolute continuity,” Trans. Amer. Math. Soc. 191, 129–148 (1974).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Prokhorovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokhorovich, M.A. Hausdorff dimension of Lebesgue sets for W p α classes on metric spaces. Math Notes 82, 88–95 (2007). https://doi.org/10.1134/S0001434607070115

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434607070115

Key words

Navigation