Skip to main content
Log in

Colorings of the space ℝn with several forbidden distances

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The paper is concerned with the classical problem concerning the chromatic number of a metric space, i.e., the minimal number of colors required to color all points in the space so that the distance (the value of the metric) between points of the same color does not belong to a given set of positive real numbers (the set of forbidden distances). New bounds for the chromatic number are obtained for the case in which the space is ℝn with a metric generated by some norm (in particular, l p) and the set of forbidden distances either is finite or forms a lacunary sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Székely, “Erdős on unit distances and the Szemerédi-Trotter theorems,” in Paul Erdős and his Mathematics, II, Ed. by G. Halasz (Springer, Berlin, 2002), pp. 649–666.

    Google Scholar 

  2. A. M. Raigorodskii, “Borsuk’s problem and the chromatic numbers of some metric spaces,” Usp. Mat. Nauk 56(1), 107–146 (2001) [Russian Math. Surveys 56 (1), 103–139 (2001)].

    MathSciNet  Google Scholar 

  3. J. Pach and P. K. Agarwal, Combinatorial Geometry (Wiley, New York, 1995).

    MATH  Google Scholar 

  4. V. Klee and S. Wagon, Old and New Unsolved Problems in Plane Geometry and Number Theory (Math. Assoc. America, Washington, DC, 1991).

    MATH  Google Scholar 

  5. A. Soifer, “Chromatic number of the plane: a historical essay,” Geombinatorics 1(3), 13–15 (1991).

    MathSciNet  Google Scholar 

  6. A. Soifer, Mathematical Coloring Book (Center for Excellence in Mathematical Education, Colorado Springs, CO, 1997).

    Google Scholar 

  7. A. Soifer, The Chromatic Number of the Plane: Its Past, Present, and Future (MTsNMO, Moscow, 2004) [in Russian].

    Google Scholar 

  8. I. Z. Ruzsa, Zs. Tuza, and M. Voigt, “Distance graphs with finite chromatic number,” J. Combin. Theory Ser. B 85(1), 181–187 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  9. Y. Katznelson, “Chromatic numbers of Cayley graphs on ℤ and recurrence,” Combinatorica 21(2), 211–219 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  10. R. K. Akhunzhanov and N. G. Moshchevitin, “On the chromatic number of the distance graph associated with a lacunary sequence,” Dokl. Ross. Akad. Nauk 397(3), 295–296 (2004) [Dokl. Math. 70 (1), 543–544 (2004)].

    MathSciNet  Google Scholar 

  11. H. Fürstenberg, Y. Katznelson and B. Weiss, “Ergodic theory and configurations in sets of positive density,” in Mathematics of Ramsey Theory (Springer, Berlin, 1990), pp. 184–198.

    Google Scholar 

  12. J. Bourgain, “A Szemeredi type theorem for sets of positive density in ℝk,” Israel J. Math. 54(3), 307–316 (1986).

    MATH  MathSciNet  Google Scholar 

  13. A. M. Raigorodskii, “On the chromatic number of a space with the metric l q,” Usp. Mat. Nauk 59(5), 161–162 (2004) [Russian Math. Surveys 59 (5), 973–975 (2004)].

    MathSciNet  Google Scholar 

  14. J.-H. Kang and Z. Fűredi, “Distance graphs on ℤn with l 1-norm,” Theoret. Comput. Sci. 319(1–3), 357–366 (2004).

    MATH  MathSciNet  Google Scholar 

  15. D. G. Larman and C. A. Rogers, “The realization of distances within sets in Euclidean space,” Mathematika 19, 1–24 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  16. A. M. Raigorodskii, “The Erdős-Hadwiger problem and the chromatic numbers of finite geometric graphs,” Mat. Sb. 196(1), 123–156 (2005) [Sb. Math. 196 (1–2), 115–146 (2005)].

    MathSciNet  Google Scholar 

  17. Y. G. Chen and T. W. Cusick, “The view-obstruction problem for n-dimensional cubes,” J. Number Theory 74(1), 126–133 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  18. B. de Mathan, “Numbers contravening a condition in density modulo 1,” Acta Math. Hungar. 36(3–4), 237–241 (1980).

    MATH  Google Scholar 

  19. A. D. Pollington, “On the density of sequence n k θ,” Illinois J. Math. 23(4), 511–515 (1979).

    MathSciNet  Google Scholar 

  20. A. M. Raigorodskii, “On the chromatic number of a space,” Usp. Mat. Nauk 55(2), 147–148 (2000) [Russian Math. Surv. 55 (2), 351–352 (2000)].

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N. G. Moschevitin, A. M. Raigorodskii, 2007, published in Matematicheskie Zametki, 2007, Vol. 81, No. 5, pp. 733–743.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moshchevitin, N.G., Raigorodskii, A.M. Colorings of the space ℝn with several forbidden distances. Math Notes 81, 656–664 (2007). https://doi.org/10.1134/S0001434607050112

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434607050112

Key words

Navigation