Skip to main content
Log in

Results of Tuned Parameterizations of a Weather Forecast Numerical Model by Measured Characteristics of Temperature Inversions in the Planetary Boundary Layer of the Moscow Megapolis

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In this work, the optimal parametrization of a mesoscale meteorological model is sought based on a comparative analysis of model forecasts and measurement results on temperature inversions in the planetary boundary layer of the atmosphere of the Moscow megapolis. The WRF–ARW model was tested with several different combinations of physical parameterizations to assess the prediction quality for temperature inversion parameter over Moscow. The dynamic and statistical characteristics of temperature inversions have been calculated and analyzed in selecting criteria for the comparisons. The terms of temperature inversion destruction are estimated depending on the inversion type. The measurement results on temperature profiles in the layer of up to 1 km obtained by an MTP-5 passive microwave profiler from 2018 to 2021 served as the data source. One MTP-5 in the north of Moscow was used to tune the model parameters, and another one on the east of Moscow was used for validation. The comparison results show that the model can be optimally tuned using a set of several parameterization variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

REFERENCES

  1. Akhmetshina, A.S., Kizhner, L.I., Kuzhevskaya, I.V., et al., Using WRF mesoscale model to restore temperature profile in atmosphere boundary layer in Tomsk, in Proceedings of SPIE, 2015, vol. 9680: 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, Tomsk, 2015, pp. 968069-1–968069-5. http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000552252.

  2. Al-Hemoud, A., Al-Sudairawi, M., Al-Rashidi, M., et al., Temperature inversion and mixing height: Critical indicators for air pollution in hot arid climate, Nat. Hazards, 2019, pp. 139–155. https://doi.org/10.1007/s11069-019-03631-2

  3. Baranov, N.A., Forecasting time series of meteorological parameters using the approach of neural differential equations, in Differentsial’nye uravneniya, matematicheskoe modelirovanie i vychislitel’nye algoritmy: sbornik materialov mezhdunarodnoi konferentsii (Differential Equations, Mathematical Modeling and Computational Algorithms: Proceedings of the International Conference), Vasil’ev, V.B. and Lomov, I.S., Eds., Belgorod: ID BelGU NIU BelGU, 2021, pp. 127–130.

  4. Baranov, N.A. and Lemishchenko, E.V., Forecasting temperature profile based on blending of measurement data and numerical prediction models, Int. J. Circuits Syst. Signal Process., 2018, vol. 12, pp. 235–239.

    Google Scholar 

  5. Borge, R., Alexandrov, V., del Vas, J.J., Lumbreras, J., and Rodriguez, E., A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula, Atmos. Environ., 2008, vol. 42, pp. 8560–8574.

    Article  CAS  Google Scholar 

  6. Bougeault, P. and Lacarrère, P., Parameterization of orography-induced turbulence in a mesobeta-scale model, Mon. Weather Rev., 1989. vol. 117, pp. 1872–1890. https://doi.org/10.1175/1520-0493(1989)

    Article  Google Scholar 

  7. Caumont, O., Cimini, D., Lohnert, U., Alados-Arboledas, L., Bleisch, R., Buffa, F., Ferrario, M.E., Haefele, A., Huet, T., Madonna, F., and Pace, G., Assimilation of humidity and temperature observations retrieved from ground-based microwave radiometers into a convective-scale NWP model, Q. J. R. Meteorol. Soc., 2016, vol. 142, pp. 2692–2704. https://doi.org/10.1002/qj.2860

    Article  Google Scholar 

  8. Chang, C.M., Chang, L.N., Hsiao, H.C., Lu, F.C., Shieh, P.F., Chen, C.N., and Lu, S.C., A further study of high air pollution episodes in Taiwan using the Microwave Temperature Profiler (MTP-5HE), JSME Int. J. Ser. B Fluids Thermal Eng., 2006, vol. 49, no. 1, pp. 60–64. https://doi.org/10.1299/jsmeb.49.60

    Article  Google Scholar 

  9. Chen, S.-H. and Sun, W.Y., A one-dimensional time dependent cloud model, J. Meteorol. Soc. Jpn., 2002, vol. 80, no. 1, pp. 99–118.

    Article  Google Scholar 

  10. Cimini, D., Haeffelin, M., Kotthaus, S., et al., Towards the profiling of the atmospheric boundary layer at European scale-introducing the cost action probe, Bull. Atmos. Sci. Technol., 2020, vol. 1, pp. 23–42. https://doi.org/10.1007/s42865-020-00003-8

    Article  Google Scholar 

  11. Collins, W., Rasch, P.J., Boville, B.A., McCaa, J., Williamson, D.L., Kiehl, J.T., and Dai, Y., Description of the NCAR community atmosphere model (CAM 3.0) (NCAR/TN-464+STR), University Corporation for Atmospheric Research, 2004. https://doi.org/10.5065/D63N21CH.

  12. EPA: United States Office of Air Quality EPA-454/R-99-005, Environmental Protection Planning and Standards, Agency Research Triangle Park, N.C., 2000.

    Google Scholar 

  13. EPA: Quality Assurance Guidance for the Collection of Meteorological Data Using Passive Radiometers, U.S. Environmental Protection Agency Region 10 Office of Environmental Assessment and U.S. Environmental Protection Agency Office of Air Quality Planning and Standards, 2011.

    Google Scholar 

  14. Ezau, I.N., Wolf, T., Miller, E.A., Repina, I.A., Troitskaya, Yu.I., and Zilitinkevich, S.S., The analysis of results of remote sensing monitoring of the temperature profile in lower atmosphere in Bergen (Norway), Russ. Meteorol. Hydrol., 2013, vol. 38, no.10, pp. 715–722.

    Article  Google Scholar 

  15. Ferrario, M.E., Rossa, A., and Pernigotti, D., Characterization of PM10 accumulation periods in the Po valley by means of boundary layer profilers, IOP Conf. Ser.: Earth Environ. Sci., 2008, vol. 1, p. 012067.

  16. Gochakov, A.V., Tokarev, V.M., and Kolker, A.B., Verification of vertical temperature profiles in the COSMO and ICON models with available observational data, IOP Conf. Ser.: Earth Environ. Sci., 2022, vol. 1023, p. 012004.

  17. Golitsyn, G.S., Kadygrov, E.N., and Kuznetsova, I.N., Microwave remote sensing investigation of the atmospheric boundary layer thermal regime above an urban area, in Proc. of 12 ARM Science Team Meeting, St. Petersburg: Fla., 2002, pp. 1–7.

  18. Govardhan, G., Nanjundiah, R.S., Satheesh, S.K., Krishnamoorthy, K., and Kotamarthi, V.R., Performance of WRF-Chem over Indian region: Comparison with measurements, J. Earth Syst. Sci., 2015, vol. 124, pp. 875–896.

    Article  CAS  Google Scholar 

  19. Grell, G.A. and Devenyi, D., Generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophys. Res. Lett., 2002, vol. 29, p. 1693. https://doi.org/10.1029/2002gl015311

    Article  Google Scholar 

  20. Grell, G.A. and Freitas, S.R., A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 2014, vol. 14, pp. 5233–5250. https://doi.org/10.5194/acp-14-5233-2014

    Article  CAS  Google Scholar 

  21. Hong, S.-Y., Dudhia, J., and Chen, S.-H., Revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation, Mon. Weather Rev., 2004, vol. 132, pp. 103–120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO2

    Article  Google Scholar 

  22. Hong, S.Y., Noh, Y., and Dudhia, J., A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Weather Rev., 2006, vol. 134, pp. 2318–2341. https://doi.org/10.1175/MWR3199.1

  23. Iacono, M.J., Delamere, J.S., Mlawer, E. J., Shephard, M.W., Clough, S.A., and Collins, W.D., Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res., 2008, vol. 113. p. D13103. https://doi.org/10.1029/2008JD009944

    Article  CAS  Google Scholar 

  24. Illingworth, A.J., Cimini, D., Haefele, A., Haeffelin, M., Hervo, M., Kotthaus, S., Lohnert, U., Martinet, P., Mattis, I., O’Connor, E.J., and Potthast, R., How can existing ground-based profiling instruments improve European weather forecasts?, Bull. Am. Meteorol. Soc., 2019, vol. 100, no. 4, pp. 605–619.

    Article  Google Scholar 

  25. Ilyin, G.N. and Troitsky, A.V., Determining the tropospheric delay of a radio signal by the radiometric method, Radiophys. Quantum Electron., 2017, vol. 60, no. 4, pp. 291–299.

    Article  Google Scholar 

  26. Janjic, Z.I., The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes, Mon. Weather Rev., 1994, vol. 122, pp. 927–945. https://doi.org/10.1175/1520-0493(1994)122

    Article  Google Scholar 

  27. Kadygrov, E.N., Miller, E.A., and Troitsky, A.V., Study of atmospheric boundary layer thermodynamics during total solar eclipse on the basis of microwave radiometers data, Proc. of 12th Special Meeting on Microwave Radiometry and Remote Sensing of the Environment (Microrad-2012), Rome, 2012, pp. 1–4. https://doi.org/10.1109/Microrad.6185246.

  28. Kain, J.S., The Kain–Fritsch convective parameterization: An update, J. Appl. Meteorol., 2004, vol. 43, no. 1, pp. 170–181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2

    Article  Google Scholar 

  29. Khaikine, M., Kuznetsova, I., Kadygrov, E., et al., Investigation of temporal–spatial parameters of an urban heat island on the basis of passive microwave remote sensing, Theor. Appl. Climatol., 2006, vol. 84, nos. 1–3, pp. 161–169. https://doi.org/10.1007/s00704-005-0154-z

    Article  Google Scholar 

  30. Kiktev, D.B., Astakhova, E.D., Zaripov, R.B., et al., FROST-2014 project and meteorological support of the Sochi-2014 Olympics, Russ. Meteorol. Hydrol., 2015, vol. 40, pp. 504–512.

    Article  Google Scholar 

  31. Kim, Y., Sartelet, K., Raut, J.C., and Chazette, P., Evaluation of the Weather Research and Forecast/Urban Model over greater Paris, Boundary-Layer Meteorol., 2013, vol. 149, pp. 105–132.

    Article  Google Scholar 

  32. Klügel, T., Böer, A., Schüler, T., and Schwarz, W., Atmospheric data set from the Geodetic Observatory Wettzell during the CONT-17 VLBI campaign, Earth Syst. Sci. Data, 2019, vol. 11, pp. 341–353. https://doi.org/10.5194/essd-11-341-2019

    Article  Google Scholar 

  33. Koldaev, A., Miller, E., Troitsky, A., and Sarichev, S., Experimental study of rain-induced accuracy limits for microwave remote temperature profiling, in WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation, Helsinki, 2010.

  34. Kotthaus, S., Bravo-Aranda, J.A., Collaud Coen, M., Guerrero-Rascado, J.L., Costa, M.J., Cimini, D., O’Connor, E.J., Hervo, M., Alados-Arboledas, L., Jiménez-Portaz, M., Mona, L., Ruffieux, D., Illingworth, A., and Haeffelin, M., Atmospheric boundary layer height from ground-based remote sensing: A review of capabilities and limitations, Atmos. Meas. Tech., 2023, vol. 16, pp. 433–479. https://doi.org/10.5194/amt-16-433-2023

    Article  Google Scholar 

  35. Kusaka, H. and Kimura, F., Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case, J. Meteorol. Soc. Jpn., 2004, vol. 82, pp. 67–80.

    Article  Google Scholar 

  36. Kusaka, H., Kondo, H., Kikegawa, Y., and Kimura, F., A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models, Boundary-Layer Meteorol., 2001, vol. 101, pp. 329–358.

    Article  Google Scholar 

  37. Kuznetsova, I.N., Khaikin, M.N., and Kadygrov, E.N., Urban effect on the atmospheric boundary layer temperature from microwave measurements in Moscow and its suburbs, Izv., Atmos. Ocean. Phys., 2004, vol. 40, no. 5, pp. 607–616.

    Google Scholar 

  38. Kuznetsova, I.N., Nakhaev, M.I., Kadygrov, E.N., and Miller, E.A., Metodicheskie rekomendatsii po ispol’zovaniyu dannykh profilemerov MTP-5 (Guidelines for Using MTP-5 Profiler Data), Moscow, 2010. http://method.meteorf.ru/norma/rec/profile.pdf.

  39. Kuznetsova, I.N., Kadygrov, E.N., Miller, E.A., and Nakhaev, M.I., Characteristics of lowest 600 m atmospheric layer temperature on the basis of MTP-5 profiler data, Opt. Atmos. Okeana, 2012, vol. 25, no. 10, pp. 877–883.

    Google Scholar 

  40. Kuznetsova, I.N., Shalygina, I.Yu., Nakhaev, M.I., Glazkova, A.A., Zakharova, P.V., Lezina, E.A., and Zvyagintsev, A.M., Meteorological factors unfavorable for air quality, Tr. Gidromettsentra Ross., 2014, vol. 351, pp. 154–172.

    Google Scholar 

  41. Lokoshchenko, M.A., Bogdanovich, A.Yu., Elansky, N.F., and Lezina, E.A., Thermal inversions and their influence on the composition of the surface air layer over Moscow, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 6, pp. 559–567.

    Article  Google Scholar 

  42. Martilli, A., Clappier, A., and Rotach, M.W., An urban surface exchange parameterization for mesoscale models, Boundary-Layer Meteorol., 2002, vol. 104, pp. 261–304.

    Article  Google Scholar 

  43. Martinet, P., Unger, V., Burnet, F., Georgis, J.-F., Hervo, M., Huet, T., Lohnert, U., Miller, E., Orlandi, E., Price, J., Schroder, M., and Thomas, G., A dataset of temperature, humidity, and liquid water path retrievals from a network of ground-based microwave radiometers dedicated to fog investigation, Bull. Atmos. Sci. Technol., 2022, vol. 3, nos. 1–4. https://doi.org/10.1007/s42865-022-00049-w

  44. Matsui, I., Sugimoto, N., Maksyutov, S., Inoue, G., Kadygrov, E., and Vyazankin, S., Comparison of atmospheric boundary layer structure measured with a microwave temperature profiler and a Mie scattering lidar, Jpn. J. Appl. Phys., 1996, vol. 35, no. 4A, pp. 2168–2169.

    Article  CAS  Google Scholar 

  45. Matsui, H., Hamilton, D.S., and Mahowald, N.M., Black carbon radiative effects highly sensitive to emitted particle size when resolving mixing-state diversity, Nat. Commun., 2018, vol. 9, p. 3446.

    Article  Google Scholar 

  46. Mendoza Uribe, I. and Lugo Morín, D.R., Performance of the WRF model with different physical parameterizations in the precipitation simulation of the state of Puebla, Atmósfera, 2020, vol. 33, no. 4, pp. 357–383. https://doi.org/10.20937/ATM.52640

    Article  Google Scholar 

  47. Misenis, C. and Zhang, Y., An examination of sensitivity of WRF/Chem predictions to physical parameterizations, horizontal grid spacing, and nesting options, Atmos. Res., 2010, vol. 97, pp. 315–334.

    Article  CAS  Google Scholar 

  48. Mooney, P.A., Mulligan, F.J., and Fealy, R., Evaluation of the sensitivity of the Weather Research and Forecasting Model to parameterization schemes for regional climates of Europe over the period 1990–95, J. Clim., 2013, vol. 26, pp. 1002–1017. https://doi.org/10.1175/JCLI-D-11-00676.1

    Article  Google Scholar 

  49. Nakanishi, M. and Niino, H., An improved Mellor–Yamada level 3 model: Its numerical stability and application to a regional prediction of advection fog, Boundary-Layer Meteorol., 2006, vol. 119, pp. 397–407. https://doi.org/10.1007/s10546-005-9030-8

    Article  Google Scholar 

  50. Odintsov, S., Miller, E., Kamardin, A., Nevzorova, I., Troitsky, A., and Schroder, M., Investigation of the mixing height in the planetary boundary layer by using sodar and microwave radiometer data, Environments, 2021, vol. 8, no. 11, p. 115. https://doi.org/10.3390/environments8110115

    Article  Google Scholar 

  51. Oke, T.R., Boundary Layer Climates, London: Methuen, 1978; Leningrad: Gidrometeoizdat, 1982.

  52. Pasquill, F., The estimation of the dispersion of windborne material, Meteorol. Mag., 1961, vol. 90, pp. 33–49.

    Google Scholar 

  53. Pervin, L. and Gan, T.Y., Sensitivity of physical parameterization schemes in WRF model for dynamic downscaling of climatic variables over the MRB, J. Water Clim. Change, 2020, vol. 12, no. 4, pp. 1043–1058. https://doi.org/10.2166/wcc.2020.036

    Article  Google Scholar 

  54. RB-046-21, Safety guide for the nuclear energy use, in Monitoring gidrologicheskikh, meteorologicheskikh i aerologicheskikh uslovii v raionakh razmeshcheniya ob’’ektov ispol’zovaniya atomnoi energii (Monitoring of Hydrological, Meteorological and Aerological Conditions in Locations of Nuclear Energy Facilities), Moscow: Federal’naya sluzhba po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru, 2021.

  55. Rivin, G.S., Rozinkina, I.A., Vil’fand, R.M., et al., Development of the high-resolution operational system for numerical prediction of weather and severe weather events for the Moscow region, Russ. Meteorol. Hydrol., 2020, vol. 45, pp. 455–465. https://doi.org/10.3103/S1068373920070018

    Article  Google Scholar 

  56. Rotach, M.W., Kadygrov, E.N., Kadygrov, V.N., Miller, E.A., et al., Turbulence structure and exchange processes in an alpine valley: The Riviera Project, Bull. Am. Meteorol. Soc., 2004, vol. 85, no. 9, pp. 1367–1385.

    Article  Google Scholar 

  57. Shalygina, I.Yu., Kuznetsova, I.N., Nakhaev, M.I., Konovalov, I.B., and Zakharova, P.V., Forecasting meteorological conditions and air pollution using numerical atmospheric model and chemical transport model data, Tr. Gidrometeorol. Nauchno.-Issled. Tsentra Ross. Fed., 2017, no. 365, pp. 81–93.

  58. Starchenko, A.V., Tolstykh, M.A., Mizyak, V.G., Svarovsky, A.I., and Prokhanov, S.A., A local observation data assimilation in mesoscale numerical weather prediction models, in Proc. SPIE, 28th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 2022, vol. 12341, p. 123416N, 28. https://doi.org/10.1117/12.2644943.

  59. Stergiou, I., Tagaris, E., and Sotiropoulou, R.-E.P., Sensitivity assessment of WRF parameterizations over Europe, Proceedings, 2017, vol. 1, no. 5, p. 119. https://doi.org/10.3390/ecas2017-04138

    Article  Google Scholar 

  60. Sukoriansky, S., Galperin, B., and Perov, V., Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice, Boundary-Layer Meteorol., 2005, vol. 117, pp. 231–257. https://doi.org/10.1007/s10546-004-6848-4

    Article  Google Scholar 

  61. Thompson, G., Field, P.R., Rasmussen, R.M., and Hall, W.D., Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization, Mon. Weather Rev., 2008, vol. 136, no.12, pp. 5095–5115. https://doi.org/10.1175/2008MWR2387.1

    Article  Google Scholar 

  62. Triantafyllou, A.G., Kalogiros, J., Krestou, A., et al., Evaluation of an atmospheric model with surface and ABL meteorological data for energy applications in structured areas, Theor. Appl. Climatol., 2019, vol. 135, pp. 1227–1242. https://doi.org/10.1007/s00704-018-2429-1

    Article  Google Scholar 

  63. Troitsky, A.V., Gaikovich, K.P., Gromov, V.D., Kadygrov, E.N., and Kosov, A.S., Thermal sounding of the atmospheric boundary layer in the oxygen band center at 60 GHz, IEEE Trans. Geosci. Remote Sens., 1993, vol. 31, no. 1, pp. 116–120.

    Article  Google Scholar 

  64. Vaisala, Accuracy Matters in Radiosonde Measurements, White Paper, 2016. https://www.vaisala.com/sites/default/files/documents/Accuracy-Matters-in-Radiosonde-Measurements-White-Paper-B211548EN.pdf.

  65. Vazaeva, N.V., Chkhetiani, O.G., Maksimenkov, L.O., Kallistratova, M.A., Kuznetsov, R.D., Kulichkov, S.N., Miller, E.A., and Yushkov, V.P., Forecast of vertical distributions of temperature and wind in the atmospheric boundary layer using the WRF-ARM model and assimilation of sodar and temperature profiler data, in Turbulentnost’, dinamika atmosfery i klimata (Turbulence, Dynamics of the Atmosphere and Climate), 2018, pp. 191–201.

    Google Scholar 

  66. Vorobyeva, E., Miller, E., and Kadygrov, E., Study of seasonal and interannual features of urban heat island vertical structure above Moscow city, in The 7th International Conference on Urban Climate (ICUC-7), Yokohama, Japan, 2009, pp. 1–5.

  67. Westwater, E.R., Han, Y., Irisov, V.G., Lenskiy, V., Kadygrov, E.N., and Viazankin, A.S., Remote sensing of boundary layer temperature profiles by a scanning 5‑mm microwave radiometer and RASS: Comparison experiments, J. Atmos. Ocean. Tech., 1999, vol. 16, pp. 805–818.

    Article  Google Scholar 

  68. WMO: Global NWP Statement of Guidance for the EUCOS- region. https://www.eumetnet.eu/wp-content/uploads/2020/08/EMN_StatementofGuidance_ EUCOSregion_GlobalNWP.pdf.

  69. Yachmeneva, N.V. and Gol’vei, A.Yu., Frequency of inversions and their impact on the level of air pollution in Chelyabinsk, Vestn. Chelyab. Gos. Univ., 2011, no. 5, p. 220.

  70. Yushkov, V.P., Thermal stratification in the air basin over the Moscow metropolis: Comparison of model and observational data, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no.4, pp. 364–375.

    Article  Google Scholar 

  71. Zhang, C., Wang, Y., and Hamilton, K., Improved representation of boundary layer clouds over the Southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme, Mon. Weather Rev., 2011, vol. 139, no. 11, pp. 3489–3513.

    Article  Google Scholar 

  72. Zhang, Y., Sartelet, K., Wu, S.Y., and Seigneur, C., Application of WRF/Chem-MADRID and WRF/Polyphemus in Europe. Part 1: Model description, evaluation of meteorological predictions, and aerosol–meteorology interactions, Atmos. Chem. Phys., 2013, vol. 13, pp. 6807–6843.

    Article  CAS  Google Scholar 

  73. Zvyagintsev, A.M., Blum, O.B., Glazkova, A.A., Kotel’nikov, S.N., Kuznetsova, I.N., Lapchenko, V.A., Lezina, E.A., Miller, E.A., Milyaev, V.A., Popikov, A.P., Semutnikova, E.G., Tarasova, O.A., and Shalygina, I.Yu., Air pollution over European Russia and Ukraine under the hot summer conditions of 2010, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 6, pp. 699–707.

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Miller.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was prepared based on the oral report presented at the “Turbulence, Dynamics of the Atmosphere and Climate” IV All-Russian Conference with International Participation dedicated to the memory of Academician A.M. Obukhov (Moscow, November 22–24, 2022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravlev, R.V., Miller, E.A., Knyazev, A.K. et al. Results of Tuned Parameterizations of a Weather Forecast Numerical Model by Measured Characteristics of Temperature Inversions in the Planetary Boundary Layer of the Moscow Megapolis. Izv. Atmos. Ocean. Phys. 60, 30–47 (2024). https://doi.org/10.1134/S0001433824700075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433824700075

Keywords:

Navigation