Skip to main content
Log in

Retrieval of Nighttime Distributions of Mesosphere–Lower Thermosphere Characteristics from Satellite Data

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The database of the SABER/TIMED satellite campaign includes the reconstruction results of nighttime distributions of O, H, and some other characteristics at heights of the mesosphere–lower thermosphere from measurements of volume emission rate ofOH* profiles near 2 μm, temperature, and ozone. The retrieval procedure is based on the chemical equilibrium approximation of nighttime ozone and a model of two excited OH states (ν = 9.8) forming the indicated radiation. In this work, a modernized model of these levels with the corrected constants corresponding to published data is used to retrieve O, H, OH, HO2, and the chemical heating rate at altitudes of 80–100 km according to SABER/TIMED measurements in 2002–2021. It is found that the new parameters of the retrieval procedure lead to significant (up to 2 times or more) changes in the spatial distributions of O, H, and chemical heating rate, but only a slight change in OH and HO2 distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Adler-Golden, S., Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements, J. Geophys. Res., 1997, vol. 102, no. A9, pp. 19969–19976.

    Article  CAS  Google Scholar 

  2. Belikovich, M.V., Kulikov, M.Y., Grygalashvyly, M., Sonnemann, G.R., Ermakova, T.S., Nechaev, A.A., and Feigin, A.M., Ozone chemical equilibrium in the extended mesopause under the nighttime conditions, Adv. Space Res., 2018, vol. 61, no. 1, pp. 426–432.

    Article  CAS  Google Scholar 

  3. Caridade, P.J.S.B., Horta, J.-Z.J., and Varandas, A.J.C., Implications of the O + OH reaction in hydroxyl nightglow modeling, Atmos. Chem. Phys., 2013, vol. 13, pp. 1–13.

    Article  Google Scholar 

  4. Evans, W.F.J. and Llewellyn, E.J., Atomic hydrogen concentrations in the mesosphere and the hydroxyl emissions, J. Geophys. Res., 1973, vol. 78, pp. 323–326.

    Article  CAS  Google Scholar 

  5. Evans, W.F.J., McDade, I.C., Yuen, J., and Llewellyn, E.J., A rocket measurement of the O2 infrared atmospheric (O–O) band emission in the dayglow and a determination of the mesospheric ozone and atomic oxygen densities, Can. J. Phys., 1988, vol. 66, pp. 941–946.

    Article  CAS  Google Scholar 

  6. Fytterer, T., von Savigny, C., Mlynczak, M., and Sinnhuber, M., Model results of OH airglow considering four different wavelength regions to derive night-time atomic oxygen and atomic hydrogen in the mesopause region, Atmos. Chem. Phys., 2019, vol. 19, pp. 1835–1851.

    Article  CAS  Google Scholar 

  7. Good, R.E., Determination of atomic oxygen density from rocket borne measurements of hydroxyl airglow, Planet. Space Sci., 1976, vol. 24, pp. 389–395.

    Article  CAS  Google Scholar 

  8. Kalogerakis, K.S., A previously unrecognized source of the O2 atmospheric band emission in Earth’s nightglow, Sci. Adv., 2019, vol. 5, no. 3, p. eaau9255.

  9. Kalogerakis, K.S., Matsiev, D., Sharma, R.D., and Wintersteiner, P.P., Resolving the mesospheric nighttime 4.3 µm emission puzzle: Laboratory demonstration of new mechanism for OH(υ) relaxation, Geophys. Res. Lett., 2016, vol. 43, pp. 8835–8843.

    Article  Google Scholar 

  10. Kaufmann, M., Zhu, Y., Ern, M., and Riese, M., Global distribution of atomic oxygen in the mesopause region as derived from SCIAMACHY O(1S) green line measurements, Geophys. Res. Lett., 2014, vol. 41, pp. 6274– 6280.

    Article  CAS  Google Scholar 

  11. Kulikov, M.Y., Belikovich, M.V., Grygalashvyly, M., Sonnemann, G.R., Ermakova, T.S., Nechaev, A.A., and Feigin, A.M., Daytime ozone loss term in the mesopause region, Ann. Geophys., 2017, vol. 35, pp. 677–682.

    Article  CAS  Google Scholar 

  12. Kulikov, M.Y., Nechaev, A.A., Belikovich, M.V., Ermakova, T.S., and Feigin, A.M., Technical note: evaluation of the simultaneous measurements of mesospheric OH, HO2, and O3 under a photochemical equilibrium assumption: A statistical approach, Atmos. Chem. Phys., 2018a, vol. 18, pp. 7453–7471.

    Article  CAS  Google Scholar 

  13. Kulikov, M.Yu., Belikovich, M.V., Grygalashvyly, M., Sonnemann, G.R., Ermakova, T.S., Nechaev, A.A., and Feigin, A.M., Nighttime ozone chemical equilibrium in the mesopause region, J. Geophys. Res., 2018b, vol. 123, pp. 3228–3242.

    Article  CAS  Google Scholar 

  14. Kulikov, M.Yu., Nechaev, A.A., Belikovich, M.V., Vorobeva, E.V., Grygalashvyly, M., Sonnemann, G.R., and Feigin, A.M., Boundary of nighttime ozone chemical equilibrium in the mesopause region from SABER data: Implications for derivation of atomic oxygen and atomic hydrogen, Geophys. Res. Lett., 2019, vol. 46, no. 2, pp. 997–1004.

    Article  CAS  Google Scholar 

  15. Kulikov, M.Y., Belikovich, M.V., Grygalashvyly, M., Sonnemann, G.R., and Feigin, A.M., The revised method for retrieving daytime distributions of atomic oxygen and odd-hydrogens in the mesopause region from satellite observations, Earth, Planets Space, 2022, vol. 74, p. 44.

    Article  Google Scholar 

  16. Kulikov, M.Yu., Belikovich, M.V., Chubarov, A.G., Dementeyva, S.O., and Feigin, A.M., Boundary of nighttime ozone chemical equilibrium in the mesopause region: Improved criterion of determining the boundary from satellite data, Adv. Space Res., 2023, vol. 71, no. 6, pp. 2770–2780.

    Article  CAS  Google Scholar 

  17. Llewellyn, E.J. and McDade, I.C., A reference model for atomic oxygen in the terrestrial atmosphere, Adv. Space Res., 1996, vol. 18, pp. 209–226.

    Article  CAS  Google Scholar 

  18. Llewellyn, E.J., McDade, I.C., Moorhouse, P., and Lockerbie, M.D., Possible reference models for atomic oxygen in the terrestrial atmosphere, Adv. Space Res., 1993, vol. 13, pp. 135–144.

    Article  CAS  Google Scholar 

  19. Makhlouf, U.B., Picard, R.H., and Winick, J.R., Photochemical–dynamical modeling of the measured response of airglow to gravity waves. 1. Basic model for OH airglow, J. Geophys. Res., 1995, vol. 100, p. 1128911311.

    Article  Google Scholar 

  20. McDade, I.C. and Llewellyn, E.J., Mesospheric oxygen atom densities inferred from night-time OH Meinel band emission rates, Planet. Space Sci., 1988, vol. 36, pp. 897–905.

    Article  CAS  Google Scholar 

  21. McDade, I.C., Llewellyn, E.J., and Harris, F.R., Atomic oxygen concentrations in the lower auroral thermosphere, Adv. Space Res., 1985, vol. 5, no. 7, pp. 229–232.

    Article  CAS  Google Scholar 

  22. Mlynczak, M.G., Marshall, B.T., Martin-Torres, F.J., Russell, J.M. III, Thompson, R.E., Remsberg, E.E., and Gordley, L.L., Sounding of the atmosphere using broadband emission radiometry observations of daytime mesospheric O2(a1Δg) 1.27 µm emission and derivation of ozone, atomic oxygen, and solar and chemical energy deposition rates, J. Geophys. Res., 2007, vol. 112, p. D15306.

    Article  Google Scholar 

  23. Mlynczak, M.G., Hunt, L.A., Mast, J.C., Marshall, B.T., Russell, J.M. III, Smith, A.K., Siskind, D.E., Yee, J.-H., Mertens, C.J., Martin-Torres, F.J., Thompson, R.E., Drob, D.P., and Gordley, L.L., Atomic oxygen in the mesosphere and lower thermosphere derived from SAB-ER: Algorithm theoretical basis and measurement uncertainty, J. Geophys. Res., 2013a, vol. 118, pp. 5724–5735.

    Article  CAS  Google Scholar 

  24. Mlynczak, M.G., Hunt, L.H., Mertens, C.J., Marshall, B.T., Russell, J.M. III, Lopez-Puertas, M., Smith, A.K., Siskind, D.E., Mast, J.C., Thompson, R.E., and Gordley, L.L., Radiative and energetic constraints on the global annual mean atomic oxygen concentration in the mesopause region, J. Geophys. Res., 2013b, vol. 118, pp. 5796–5802.

    Article  CAS  Google Scholar 

  25. Mlynczak, M.G., Hunt, L.A., Marshall, B.T., Mertens, C.J., Marsh, D.R., Smith, A.K., Russell, J.M., Siskind, D.E., and Gordley, L.L., Atomic hydrogen in the mesopause region derived from SABER: Algorithm theoretical basis, measurement uncertainty, and results, J. Geophys. Res., 2014, vol. 119, pp. 3516–3526.

    Article  CAS  Google Scholar 

  26. Mlynczak, M.G., Hunt, L.A., Russell, J.M., and Marshall, B.T., Updated SABER night atomic oxygen and implications for SABER ozone and atomic hydrogen, Geophys. Res. Lett., 2018, vol. 45, pp. 5735–5741.

    Article  CAS  Google Scholar 

  27. Panka, P.A., Kutepov, A.A., Kalogerakis, K.S., Janches, D., Russell, J.M., Rezac, L., Feofilov, A.G., Mlynczak, M.G., and Yiğit, E., Resolving the mesospheric nighttime 4.3 µm emission puzzle: Comparison of the CO23) and OH(υ) emission models, Atmos. Chem. Phys., 2017, vol. 17, pp. 9751–9760.

    Article  CAS  Google Scholar 

  28. Panka, P.A., Kutepov, A.A., Rezac, L., Kalogerakis, K.S., Feofilov, A.G., Marsh, D., Janches, D., and Yiğit, E., Atomic oxygen retrieved from the SABER 2.0- and 1.6‑µm radiances using new first-principles nighttime OH(υ) model, Geophys. Res. Lett., 2018, vol. 45, pp. 5798–5803.

    Article  CAS  Google Scholar 

  29. Panka, P.A., Kutepov, A.A., Zhu, Y., Kaufmann, M., Kalogerakis, K.S., Rezac, L., Feofilov, A.G., Marsh, D.R., and Janches, D., Simultaneous retrievals of nighttime O(3P) and total OH densities from satellite observations of Meinel band emissions, Geophys. Res. Lett., 2021, vol. 48, p. e2020GL091053.

  30. Pendleton, W.R., Baker, K.D., and Howlett, L.C., Rocket-based investigations of O(3P), O2(a1Δg) and OH* (υ =1,2) during the solar eclipse of 26 February1979, J. Atmos. Terr. Phys., 1983, vol. 45, no. 7, pp. 479–491.

    Article  CAS  Google Scholar 

  31. Sharma, R.D., Wintersteiner, P.P., and Kalogerakis, K.S., A new mechanism for OH vibrational relaxation leading to enhanced CO2 emissions in the nocturnal mesosphere, Geophys. Res. Lett., 2015, vol. 42, pp. 4639–4647.

    Article  CAS  Google Scholar 

  32. Siskind, D.E., Marsh, D.R., Mlynczak, M.G., Martin-Torres, F.J., and Russell, J.M. III, Decreases in atomic hydrogen over the summer pole: Evidence for dehydration from polar mesospheric clouds?, Geophys. Res. Lett., 2008, vol. 35, p. L13809.

    Article  Google Scholar 

  33. Siskind, D.E., Mlynczak, M.G., Marshall, T., Friedrich, M., and Gumbel, J., Implications of odd oxygen observations by the TIMED/SABER instrument for lower D region ionospheric modeling, J. Atmos. Sol.-Terr. Phys., 2015, vol. 124, pp. 63–70.

    Article  CAS  Google Scholar 

  34. Smith, A.K., Marsh, D.R., Mlynczak, M.G., and Mast, J.C., Temporal variations of atomic oxygen in the upper mesosphere from SABER, J. Geophys. Res., 2010, vol. 115, p. D18309.

    Article  Google Scholar 

  35. Thomas, R.J., Atomic hydrogen and atomic oxygen density in the mesosphere region: Global and seasonal variations deduced from Solar Mesosphere Explorer near-infrared emissions, J. Geophys. Res., 1990, vol. 95, pp. 16457–16476.

    Article  CAS  Google Scholar 

  36. Xu, J., Gao, H., Smith, A.K., and Zhu, Y., Using TIMED/SABER nightglow observations to investigate hydroxyl emission mechanisms in the mesopause region, J. Geophys. Res., 2012, vol. 117, no. D2, p. D02301.

    Article  Google Scholar 

  37. Zhu, Y. and Kaufmann, M., Atomic oxygen abundance retrieved from SCIAMACHY hydroxyl nightglow measurements, Geophys. Res. Lett., 2018, vol. 45, pp. 9314– 9322.

    Article  CAS  Google Scholar 

  38. Zhu, Y. and Kaufmann, M., Consistent nighttime atomic oxygen concentrations from O2 A-band, O(1S) green-line, and OH airglow measurements as performed by SCIAMACHY, Geophys. Res. Lett., 2019, vol. 46, pp. 8536–8545.

    Article  CAS  Google Scholar 

Download references

Funding

The retrieval of O and H distributions and analysis of results was supported by the Russian Science Foundation, grant no. 22-12-00064, https://rscf.ru/project/22-12-00064/. The retrieval of distributions of OH, HO2, and the chemical heating rate was supported from State Task in the field of science no. 0729-2020-0037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Kulikov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was prepared based on the oral report presented at the “Turbulence, Dynamics of the Atmosphere and Climate” IV All-Russian Conference with International Participation dedicated to the memory of Academician A.M. Obukhov (Moscow, November 22–24, 2022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, M.Y., Belikovich, M.V., Chubarov, A.G. et al. Retrieval of Nighttime Distributions of Mesosphere–Lower Thermosphere Characteristics from Satellite Data. Izv. Atmos. Ocean. Phys. 60, 74–86 (2024). https://doi.org/10.1134/S0001433824700051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433824700051

Keywords:

Navigation