Skip to main content
Log in

Variability of the Atmospheric Anticyclones and Their Connection with Surface Temperature Variations in Extratropical Latitudes of the Northern Hemisphere in Recent Decades

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

We have obtained quantitative estimates of the spatial and seasonal features of the characteristics of anticyclones in the atmosphere of the Northern Hemisphere and their changes in recent decades using ERA5 reanalysis data (1979–2021). A high correlation between the interannual variations of the mean seasonal occurence of anticyclones and near-surface temperature over extensive regions in the extratropical latitudes of the Northern Hemisphere is noted. According to the estimates, up to 60% of the interannual variance of near-surface temperature in winter and summer is associated with variations in the mean seasonal occurence of anticyclones and up to 50% with variations of intense winter and summer anticyclones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Akperov, M.G. and Mokhov, I.I., A comparative analysis of the method of extratropical cyclone identification, Izv., Atmos. Ocean. Phys., 2010, vol. 46, no. 5, pp. 574–590.

    Article  Google Scholar 

  2. Akperov, M.G. and Mokhov, I.I., Estimates of the sensitivity of cyclonic activity in the troposphere of extratropical latitudes to changes in the temperature regime, Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 2, pp. 113–120.

    Article  Google Scholar 

  3. Akperov, M.G., Bardin, M.Yu., Volodin, E.M., Golitsyn, G.S., and Mokhov, I.I., Probability distributions for cyclones and anticyclones from the NCEP/NCAR reanalysis data and the INM RAS climate model, Izv., Atmos. Ocean. Phys., 2007, vol. 43, no. 6, pp. 705–712.

    Article  Google Scholar 

  4. Akperov, M.G., Mokhov, I.I., Dembitskaya, M.A., Parfenova, M.R., and Rinke, A., Lapse rate peculiarities in the Arctic from reanalysis data and model simulations, Russ. Meteorol. Hydrol., 2019a, vol. 44, no. 2, pp. 97–102.

    Article  Google Scholar 

  5. Akperov, M., Rinke, A., Mokhov, I.I., et al., Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX), Global Planet. Change, 2019b, vol. 182, p. 103005.

    Article  Google Scholar 

  6. Akperov, M., Semenov, V., Mokhov, I., Dorn, W., and Rinke, A., Impact of Atlantic water inflow on winter cyclone activity in the Barents Sea: Insights from coupled regional climate model simulations, Environ. Res. Lett., 2020, vol. 15, no. 2, p. 024009. https://doi.org/10.1088/1748-9326/ab6399

    Article  Google Scholar 

  7. Akperov, M.G., Eliseev, A.V., Mokhov, I.I., Semenov, V.A., Parfenova, M.R., and Koenigk, T., Wind energy potential in the Arctic and subarctic regions and its projected change in the 21st century based on regional climate model simulations, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 6, pp. 428–436.

    Article  Google Scholar 

  8. Bardin, M.Yu. and Polonskii, A.B., North Atlantic Oscillation and synoptic variability in the European–Atlantic region in winter, Izv., Atmos. Ocean. Phys., 2005, vol. 41, no. 2, pp. 127–136.

    Google Scholar 

  9. Bardin, M., Gruza, G.V., Lupo, A.R., Mokhov, I.I., and Tikhonov, V.A., Quasi-stationary anticyclones in the Northern Hemisphere: An analysis of interannual and interdecadal variability and long-term trends at 1000 hPa and 500 hPa using geometric definition, in Proc. 16th on Global Change and Climate Variation, 85th Annual Meeting of AMS, 2005, pp. 9–13.

  10. Climate Change 2021: The Physical Science Basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Masson-Delmotte, V., et al., Eds., Cambridge Univ. Press, 2021.

    Google Scholar 

  11. Golitsyn, G.S., Mokhov, I.I., Akperov, M.G., and Bardin, M.Yu., Distribution functions of probabilities of cyclones and anticyclones from 1952 to 2000: An instrument for the determination of global climate variations, Dokl. Earth Sci., 2007, vol. 413, no. 2, pp. 324–326.

    Article  CAS  Google Scholar 

  12. Gulev, S.K., Zolina, O., and Grigoriev, S., Extratropical cyclone variability in the northern hemisphere winter from the NCEP/NCAR reanalysis data, Clim. Dyn., 2001, vol. 17, no. 10, pp. 795–809.

    Article  Google Scholar 

  13. Hartmann D.L. et al. Observations: Atmosphere and surface / In: Climate Change 2013: The Physical Science Basis. Contribution Of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T.F. (eds.). Cambridge Univ. Press, Cambridge, UK and New York, USA. 2013. P. 159–254.

    Google Scholar 

  14. Hersbach, H.B., Bell, B., Berrisford, P., et al., The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 2020, vol. 146, pp. 1999–2049.

    Article  Google Scholar 

  15. Intensivnye atmosfernye vikhri i ikh dinamika (Intense Atmospheric Vortices and Their Dynamics), Mokhov, I.I., Kurganskii, M.V., and Chkhetiani, O.G., Eds., Moscow: GEOS, 2018.

    Google Scholar 

  16. Meshcherskaya, A.V., Bulygina, O.N., Golod, M.P., et al., Atmospheric circulation, in Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii (Second Assessment Report of Roshydromet on Climate Changes and Their Consequences in the Territory of Russia), Moscow: Rosgidromet, 2014, pp. 125–170.

  17. Mokhov, I.I., Climate change: Causes, risks, consequences, and problems of adaptation and regulation, Herald Russ. Acad. Sci., 2022, vol. 92, no. 1, pp. 1–11.

    Article  Google Scholar 

  18. Mokhov, I.I., Seasonal features of the changes in the frequency of severe weather events in Russian regions over the past decades, Russ. Meteorol. Hydrol., 2023, vol. 48, no. 11, pp. 954–965.

    Article  Google Scholar 

  19. Mokhov, I. I. and Akperov, M. G., Tropospheric lapse rate and its relation to surface temperature from reanalysis data, Izv., Atmos. Ocean. Phys., 2006, vol. 42, no. 4, pp. 430–438.

    Article  Google Scholar 

  20. Mokhov, I.I. and Timazhev, A.V., Atmospheric blocking and changes in its frequency in the 21st century simulated with the ensemble of climate models, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 6, pp. 369–377.

    Article  Google Scholar 

  21. Mokhov, I.I., Mokhov, O.I., Petukhov, V.K., and Khairullin, R.R., Effect of global climatic changes on the cyclonic activity in the atmosphere, Izv. Atmos. Oceanic Phys., 1992a, vol. 28, no. 1, pp. 7–18.

    Google Scholar 

  22. Mokhov, I.I., Mokhov, O.I., Petukhov, V.K., and Khairullin, R.R., Cloud effect on the atmospheric eddy activity at climate change, Sov. Meteorol. Hydrol., 1992b, no. 1, pp. 1–6.

  23. Mokhov, I.I., Chernokul’skii, A.V., Akperov, M.G., Dufresne, J.-L., Le Tret, H., Variations in the characteristics of cyclonic activity and cloudiness in the atmosphere of extratropical latitudes of the Northern Hemisphere based from model calculations compared with the data of the reanalysis and satellite data, Dokl. Earth Sci., 2009, vol. 424, no. 1, pp. 147–150.

    Article  CAS  Google Scholar 

  24. Neu, U., Akperov, M.G., Benestad, R., Blender, R., Caballero, R., Cocozza, A., Dacre, H., Feng, Y., Grieger, J., Gulev, S., Hanley, J., Hewson, T., Hodges, K., Inatsu, M., Keay, K., Kew, S.F., Kindem, I., Leckebusch, G.C., Liberato, M., Lionello, P., Mokhov, I.I., Pinto, J.G., Raible, C.C., Reale, M., Rudeva, I., Schuster, M., Simmonds, I., Sinclair, M., Sprenger, M., Tilinina, N.D., Trigo, I.F., Ulbrich, S., Ulbrich, U., Wang, X.L., Wernli, H., and Xia, L., IMILAST – a community effort to intercompare cyclone detection and tracking algorithms: quantifying method-related uncertainties, Bull. Amer. Meteorol. Soc., 2013, vol. 94, no. 4, pp. 529–547.

  25. Okajima, S., Nakamura, H., and Kaspi, Y., Cyclonic and anticyclonic contributions to atmospheric energetics, Sci. Rep., 2021, vol. 11, p. 13202. https://doi.org/10.1038/s41598-021-92548-7

    Article  CAS  Google Scholar 

  26. Simmonds, I. and Keay, K., Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979–2008, Geophys. Res. Lett., 2009, vol. 36, p. L19715. https://doi.org/10.1029/2009GL039810

    Article  Google Scholar 

  27. Sporyshev, P.V. and Mirvis, V.M., Anthropogenic component of climate change in the territory of Russia, in Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii (Second Assessment Report of Roshydromet on Climate Changes and Their Consequences in the Territory of Russia), Moscow: Rosgidromet, 2014, pp. 260–277.

  28. Sun, B., Groisman, P.Ya., and Mokhov, I.I., et al., Recent changes in cloud type frequency and inferred increases in convection over the United States and the Former USSR, J. Clim., 2001, vol. 14, no. 8, pp. 1864–1880.

    Article  Google Scholar 

  29. Timazhev, A.V. and Mokhov, I.I., Heat and cold waves formation in association with atmospheric blockings in the Northern Hemisphere, in Research Activities in Earth System Modelling, Astakhova, E., Ed., WMO, 2021.

    Google Scholar 

  30. Tretii otsenochnyi doklad ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii (Third Assessment Report on Climate Changes and Their Effects on the Territory of the Russian Federation), St. Petersburg: Naukoemkie tekhnologii, 2022.

  31. Ulbrich, U., Leckebusch, G.C., Grieger, J., Schuster, M., Akperov, M., Bardin, M.Yu., Feng, Y., Gulev, S., Inatsu, M., Keay, K., Kew, S.F., Liberato, M.L.R., Lionello, P., Mokhov, I.I., Neu, U., and the IMILAST team, Are greenhouse gas signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm?, Meteorol. Z., 2013, vol. 22, no. 1, pp. 61–68.

    Article  Google Scholar 

Download references

Funding

This work was carried out with financial support from the Russian Science Foundation, grant no. 22-27-00780.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Akperov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akperov, M.G., Mokhov, I.I. Variability of the Atmospheric Anticyclones and Their Connection with Surface Temperature Variations in Extratropical Latitudes of the Northern Hemisphere in Recent Decades. Izv. Atmos. Ocean. Phys. 60, 15–22 (2024). https://doi.org/10.1134/S0001433824700026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433824700026

Keywords:

Navigation