Skip to main content
Log in

Russian Investigations in the Field of Atmospheric Radiation in 2019–2022

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The main results of scientific research and development in the field of atmospheric radiation in Russia for the period 2019–2022 are considered. The main attention is paid to research in the field of radiative transfer theory, atmospheric spectroscopy, radiation climatology, aerosol and radiation forcing, remote sensing of the atmosphere and surface, interpretation of satellite measurements Lists of major publications in these areas for this period are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Afanas’ev, V.P., Budak, V.P., Efremenko, D.S., and Kaplya, P.S., Application of photometric light field theory to electron scattering problems, Svetotekhnika, 2019, no. 1, pp.44–50.

  2. Afanas’ev, V.P., Basov, A.Yu., Budak, V.P., Efremenko, D.S., and Kokhanovsky, A.A., Analysis of the discrete theory of radiative transfer in the coupled “ocean–atmosphere” system: Current status, problems and development prospects, J. Mar. Sci. Eng., 2020, vol. 8, p. 202.

    Article  Google Scholar 

  3. Alberti, C., Tu, O., Hase, F., Makarova, M.V., Gribanov, K., Foka, S.C., Zakharov, V., Blumenstock, T., Buchwitz, M., Diekmann, C., Ertl, B., Frey, M.M., Imhasin, H.K., Ionov, D.V., Khosrawi, F., Osipov, S.I., Reuter, M., Schneider, M., and Warneke, T., Investigation of spaceborne trace gas products over St Petersburg and Yekaterinburg, Russia, by using COllaborative Column Carbon Observing Network (COCCON) observations, Atmos. Meas. Tech., vol. 15, no. h. 2022, pp. 2199–2229.

  4. Andreev, A.I., Shamilova, Yu.A., and Kholodov, E.I., Using convolutional neural networks for cloud detection from Meteor-M No. 2 MSU-MR data, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 7, pp. 459–466.

    Article  Google Scholar 

  5. Antokhin, P.N., Arshinova, V.G., Arshinov, M.Yu., Bela-n, B.D., Belan, S.B., Golobokova, L.P., Davydov, D.K., Ivlev, G.A., Kozlov, A.V., Kozlov, A.S., Otmak-hov, V.I., Rasskazchikova, T.M., Simonenkov, D.V., Tolmachev, G.N., and Fofonov, A.V., Change in the air composition upon the transition from the troposphere to the stratosphere, Atmos. Oceanic Opt., 2021, vol. 34, no. 6, pp. 567–576.

    Article  ADS  CAS  Google Scholar 

  6. Arshinov, M.Yu., Arshinova, V.G., Belan, B.D., Davydov, D.K., Ivlev, G.A., Kozlov, A.S., Kuibida, L.V., Rasskazchikova, T.M., Simonenkov, D.V., Tolmachev, G.N., and Fofonov, A.V., Anomalous vertical distribution of organic aerosol over the south of Western Siberia in September 2018, Atmos. Oceanic Opt., 2021, vol. 34, no. 5, pp. 495–502.

    Article  ADS  CAS  Google Scholar 

  7. Asmus, V.V., Ioffe, G.M., Kramareva, L.S., et al., Satellite monitoring of natural hazards on the territory of Russia, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 11, pp. 719–728.

    Article  Google Scholar 

  8. Asmus, V.V., Milekhin, O.E., Kramareva, L.S., et al., Arktika-M: The world’s first highly elliptical orbit hydrometeorological space system, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 12, pp. 805–816.

    Article  Google Scholar 

  9. Astafurov, V.G. and Skorokhodov, A.V., Using the results of cloud classification based on satellite data for solving climatological and meteorological problems, Russ. Meteorol. Hydrol., 2021b, vol. 46, no. 12, pp. 839–848.

    Article  Google Scholar 

  10. Astafurov, V.G., Skorokhodov, A.V., and Kur’yanovich, K.V., Summer statistical models of cloud parameters over Western Siberia according to MODIS data, Russ. Meteorol. Hydrol., 2021a, vol. 46, no. 11, pp. 735–746.

    Article  Google Scholar 

  11. Balugin, N.V., Fomin, B.A., Lykov, A.D., and Yushkov, V.A., Stratospheric radiation budget according to optical balloon backscatter probe and radiation modeling, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 10, pp. 812–817.

    Article  Google Scholar 

  12. Belan, B.D., Ivlev, G.A., and Sklyadneva, T.K., The relationship between ultraviolet radiation and meteorological factors and atmospheric turbidity: Part I. Role of total ozone content, clouds, and aerosol optical depth, Atmos. Oceanic Opt., 2020, vol. 33, no. 8, pp. 638–644.

    Article  ADS  CAS  Google Scholar 

  13. Belan, B.D., Ivlev, G.A., and Sklyadneva, T.K., The relationship between the ultraviolet radiation and meteorological factors and atmospheric turbidity: Part II. Role of surface albedo, Atmos. Oceanic Opt., 2021, vol. 34, no. 1, pp. 128–133.

    Article  ADS  CAS  Google Scholar 

  14. Belan, B.D., Ancellet, G., Andreeva, I.S., Antokhin, P.N., Arshinova, V.G., Arshinov, M.Y., Balin, Y.S., Barsuk, V.E., Belan, S.B., Chernov, D.G., Davydov, D.K., Fofonov, A.V., Ivlev, G.A., Kotel’nikov, S.N., Kozlov, A.S., et al., Integrated airborne investigation of the air composition over the Russian sector of the Arctic, Atmos. Meas. Tech., 2022, vol. 15, no. 13, pp. 3941–3967.

    Article  CAS  Google Scholar 

  15. Belan, B.D., Ivlev, G.A., Kozlov, A.V., Pestunov, D.A., Sklyadneva, T.K., and Fofonov, A.V., Solar radiation measurements at the Fonovaya observatory: Part I: Methodical aspects and specifications, Atmos. Oceanic Opt., 2023a, vol. 36, no. 1, pp. 47–53.

    Article  ADS  Google Scholar 

  16. Belan, B.D., Ivlev, G.A., Kozlov, A.V., Pestunov, D.A., Sklyadneva, T.K., and Fofonov, A.V., Solar radiation measurements at the Fonovaya observatory: Part II: Results from 2021 measurements, Atmos. Oceanic Opt., 2023b, vol. 36, no. 1, pp. 54–60.

    Article  ADS  Google Scholar 

  17. Belikovich, M.V., Kulikov, M.Yu., Makarov, D.S., Skalyga, N.K., Ryskin, V.G., Shvetsov, A.A., Krasil’nikov, A.A., Dementyeva, S.O., Serov, E.A., and Feigin, A.M., Long-term observations of microwave brightness temperatures over a metropolitan area: Comparison of radiometric data and spectra simulated with the use of radiosonde measurements, Remote Sens., 2016, vol. 13, p. 2021.

    Google Scholar 

  18. Belikovich, M.V., Kulikov, M.Yu., Ryskin, V.G., Shvetsov, A.A., Krasil’nikov, A.A., Skalyga, N.K., Serov, E.A., and Feigin A.M., Application of empirical orthogonal functions parameterization in the problem of retrieval of the tropospheric thermal structure by radiometric data, Radiophys. Quantum Electron., 2019, vol. 62, no. 9, pp. 591–605.

    Article  ADS  Google Scholar 

  19. Belikovich, M.V., Makarov, D.S., Serov, E.A., Kulikov, M.Yu., and Feigin, A.M., Validation of atmospheric absorption models within the 20–60 GHz band by simultaneous radiosonde and microwave observations: The advantage of using ECS formalism, Remote Sens., 2022, vol. 14, p. 6042.

    Article  ADS  Google Scholar 

  20. Belov, M.L., Vsyakova, Yu.I., and Gorodnichev, V.A., Optical method for detecting oil pollution on a water surface in the UV spectral range, Svetotekhnika, 2019b, no. 3, pp. 15–21.

  21. Belov, V.V., Abramochkin, V.N., Gridnev, Yu.V., Kudryavtsev, A.N., Tarasenkov, M.V., and Fedosov, A.V., Bistatic underwater optical–electronic communications. Field experiments in 2017–2018., Svetotekhnika, 2019a, no. 2, pp. 67–70.

  22. Biryukov, E.Yu. and Kostsov, V.S., The use of linear regression relations derived from model and experimental data for retrieval of the water content of clouds from ground-based microwave measurements, Atmos. Oceanic Opt., 2019, vol. 32, no. 5, pp. 569–577.

    Article  Google Scholar 

  23. Bloshchinskiy, V.D., Kuchma, M.O., and Kukharsky, A.V., Determination of the total ozone content in atmospheric column according to the data of Electro-L No. 3 spacecraft using neural networks satellite, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 12, pp. 1627–1632.

    Article  Google Scholar 

  24. Bordovskaya, Yu.I., Virolainen, Ya.A., and Timofeev, Yu.M., Comparison of ground-based and satellite methods for determining vertical ozone profiles, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2022, vol. 19, no. 2, pp. 225–231.

    Article  Google Scholar 

  25. Borkov, Y.G., Solodov, A.M., Solodov, A.A., and Perevalov, V.I., Line intensities of the 01111–00001 magnetic dipole absorption band of 12C16O2: laboratory measurements, J. Mol. Spectrosc., 2021, vol. 376, p. 111418.

    Article  CAS  Google Scholar 

  26. Bruchkovski, I.I., Borovski, A.N., Dzhola, A.V., Elansky, N.F., Postylyakov, O.V., Bazhenov, O.E., Romanovskii, O.A., Sadovnikov, S.A., and Kanaya, Y., Observations of integral formaldehyde content in the lower troposphere in urban agglomerations of Moscow and Tomsk using the method of differential optical absorption spectroscopy, Atmos. Oceanic Opt., 2019, vol. 32, no. 3, pp. 248–256.

    Article  Google Scholar 

  27. Burenkov, V.I., Sheberstov, S.V., Artem’ev, V.A., and Taskaev, V.R., Estimation of the error in measuring the index of light attenuation by seawater in the turbid waters of the Arctic seas, Svetotekhnika, 2019, no. 2, pp. 55–60.

  28. Cheremisin, A.A., Marichev, V.N., Bochkovskii, D.A., Novikov, P.V., and Romanchenko, I.I., Stratospheric Aerosol of Siberian Forest Fires According to Lidar Observations in Tomsk in August 2019, Atmos. Oceanic Opt., 2022, vol. 35, no. 1, pp. 57–64.

    Article  ADS  CAS  Google Scholar 

  29. Chernenkov, A.Yu. and Kostrykin, S.V., Estimation of radiative forcing from snow darkening with black carbon using climate model data, Izv., Atmos. Ocean. Phys., 2021, vol.57, no. 2, pp.133–141.

    Article  Google Scholar 

  30. Chesnokova, T.Yu., Firsov, K.M., and Razmolov, A.A., Contribution of the water vapor continuum absorption to radiative balance of the atmosphere with cirrus clouds, Atmos. Oceanic Opt., 2019a, vol. 32, no. 1, pp. 64–71.

    Article  Google Scholar 

  31. Chesnokova, T.Yu., Makarova, M.V., Chentsov, A.V., Voronina, Yu.V., Zakharov, V.I., Rokotyan, N.V., and Langerock, B., Retrieval of carbon monoxide total column in the atmosphere from high resolution atmospheric spectra, Atmos. Oceanic Opt., 2019b, vol. 32, no. 4, pp. 378–386.

    Article  CAS  Google Scholar 

  32. Chesnokova, T.Yu., Chentsov, A.V., and Firsov, K.M., Impact of spectroscopic information on total column water vapor retrieval in the near-infrared spectral region, J. Appl. Remote Sens., 2020a, vol. 14, no. 3, p. 34510.

    Article  Google Scholar 

  33. Chesnokova, T.Yu., Makarova, M.V., Chentsov, A.V., Kostsov, V.S., Poberovskii, A.V., Zakharov, V.I., and Rokotyan, N.V., Estimation of the impact of differences in the ch4 absorption line parameters on the accuracy of methane atmospheric total column retrievals from ground-based FTIR spectra, J. Quant. Spectrosc. Radiat. Transfer, 2020b, vol. 254, p. 107187.

    Article  CAS  Google Scholar 

  34. Chistikov, D.N., Finenko, A.A., Lokshtanov, S.E., Petrov, S.V., and Vigasin, A.A., Simulation of collision-induced absorption spectra based on classical trajectories and ab initio potential and induced dipole surfaces. I. Case study of N2–N2 rototranslational band, J. Chem. Phys., 2019, vol. 151, p. 194106.

    Article  PubMed  ADS  Google Scholar 

  35. Chistikov, D.N., Finenko, A.A., Kalugina, Y.N., Lokshtanov, S.E., Petrov, S.V., and Vigasin, A.A., Simulation of collision-induced absorption spectra based on classical trajectories and ab initio potential and induced dipole surfaces. II. CO2–Ar rototranslational band including true dimer contribution, J. Chem. Phys., 2021, vol. 155, p. 064301.

    Article  PubMed  ADS  CAS  Google Scholar 

  36. Chubarova, N.E., Pastukhova, A.S., Zhdanova, E.Y., Volpert, E.V., Smyshlyaev, S.P., and Galin, V.Y., Effects of ozone and clouds on temporal variability of surface UV radiation and UV resources over Northern Eurasia derived from measurements and modeling, Atmosphere, 2020, vol. 11, p. 59.

    Article  ADS  Google Scholar 

  37. Chubarova, N.Y., Androsova, Y.Y., and Lezina, Y.A., The dynamics of the atmospheric pollutants during the Covid-19 pandemic 2020 and their relationship with meteorological conditions in Moscow, Geogr., Environ., Sustainability, 2021a, vol. 14, no. 4, pp. 168–182.

    Google Scholar 

  38. Chubarova, N.E., Poliukhov, A.A., and Volodin, E.M., Improving the calculation of the sulfate aerosol evolution and radiative effects in the Institute of Numerical Mathematics, Russian Academy of Sciences, climate model, Izv., Atmos. Ocean. Phys., 2021b, vol. 57, pp. 370–378.

    Article  Google Scholar 

  39. Chubarova, N.E., Rozental’, V.A., Zhdanova, E.Yu., and Polyukhov, A.A., New radiation complex at the Moscow State University Meteorological Observatory of the BSRN standard: Methodological aspects and first measurement results, Opt. Atmos. Okeana, 2022, vol. 35, no. 8, pp. 670–678.

    Google Scholar 

  40. Chubarova, N.E., Vogel, H., Androsova, E.E., Kirsanov, A.A., Popovicheva, O.B., Vogel, B., and Rivin, G.S., Columnar and surface urban aerosol in the Moscow megacity according to measurements and simulations with the COSMO-ART model, Atmos. Chem. Phys., 2022a, vol. 22, pp. 10443–10466.

    Article  ADS  CAS  Google Scholar 

  41. Chulichkov, A.I., Nikitin, S.V., Borovski, A.N., and Postylyakov, O.V., Computer-aided measuring system based on an artificial neural network for estimating atmospheric parameter, in Proc. IEEE, 2021, International Conference on Information Technology and Nanotechnology (ITNT)/ 20-24 September 2021. https://doi.org/10.1109/ITNT52450.2021.9649031.

  42. Chuprov, I.A., Konstantinov, D.N., Efremenko, D.S., Zemlyakov, V.V., an Gao, Ts., Solving the radiation transfer equation for vertically inhomogeneous media using numerical integration methods: Comparative analysis, Svetotekhnika, 2022, no. 4, pp. 63–70.

  43. Chursin, V.V. and Kuzhevskaya, I.V., Identification of probabilistic zones of thunderstorm development using neural networks based on satellite sensing data, Geosfer. Issled., 2022, no. 3, pp. 162–171.

  44. Davydova, M.A., Elansky, N.F., Zakharova, S.A., and Postylyakov, O.V., Application of a numerical-asymptotic approach to the problem of restoring the parameters of a local stationary source of anthropogenic pollution, Dokl. Math., 2021, vol. 103, no. 1, pp. 26–31.

    Article  MathSciNet  Google Scholar 

  45. Deichuli, V.M., Petrova, T.M., Solodov, A.M., Solodov, A.A., Chesnokova, T.Yu., and Trifonova-Yakovleva, A.M., H2O absorption line parameters in the 5900–6100-cm−1 spectral region, Atmos. Oceanic Opt., 2021, vol. 34, no. 1, pp. 184–189.

    Article  ADS  CAS  Google Scholar 

  46. Del Águila, A. and Efremenko, D.S., Improving the accuracy of a two-stream radiative transfer model for calculating optical absorption spectra in the presence of aerosols, Svetotekhnika, 2021, no. 2, pp. 44–49.

  47. Del Águila, A., Efremenko, D.S., and Trautmann, T., Review of dimensionality reduction methods for hyperspectral optical signal processing, Svetotekhnika, 2019, no. 4, pp. 60–70.

  48. Del Águila, A., Efremenko, D.S., Garcia, V.M., and Kataev, M.Y., Cluster low-streams regression method for hyperspectral radiative transfer computations: Cases of O2 A- and CO2 bands, Remote Sens., 2020, vol. 12, no. 8, p. 1250.

    Article  ADS  Google Scholar 

  49. Dombrovsky, L.A., Fedorets, A.A., Levashov, V.Y., Kryukov, A.P., Bormashenko, E., and Nosonovsky, M., Modeling evaporation of water droplets as applied to survival of airborne viruses, Atmosphere, 2020, vol. 11, no. 8, p. 965.

    Article  ADS  CAS  Google Scholar 

  50. Dudaryonok, A., Buldyreva, J., Lavrentieva, N., and Troitsyna, L., Temperature-dependence parameters for CH3I–O2 and CH3I–air line-broadening coefficients, J. Quant. Spectrosc. Radiat. Transfer, 2022a, vol. 277, p. 108164.

    Article  Google Scholar 

  51. Dudaryonok, A.S., Buldyreva, J.A., Lavrentieva, N.N., and Troitsyna, L., Temperature-dependence exponents for ch3i-n2 line-broadening coefficients, J. Quant. Spectrosc. Radiat. Transfer, 2022b, vol. 277, p. 107956.

    Article  CAS  Google Scholar 

  52. Efremenko, D.S., Discrete ordinate radiative transfer model with neural network eigenvalue calculation: Proof of concept, Svetotekhnika, 2021, no. 1, pp. 64–68.

  53. Filei, A.A., Retrieval of the cloud optical depth and particle effective radii from MSU-MR daytime measurements, Opt. Atmos. Okeana, 2019, vol. 32, no. 8, pp. 650–656.

    Google Scholar 

  54. Filei, A.A., Retrieval of the cloud top height from using Meteor-M No. 2-2 MSU-MR measurements, Opt. Atmos. Okeana, 2020a, vol. 33, no. 12, pp. 918–925.

    Google Scholar 

  55. Filei, A.A., Development of optical parameters of volcanic cloud models for remote sensing of Earth from space, Opt. Atmos. Okeana, 2020b, vol. 33, no. 2, pp. 127–134.

    Google Scholar 

  56. Filei, A.A. and Marenco, F., Retrieval of volcanic ash parameters from satellite data, Russ. Meteorol. Hydrol., 2021a, vol. 46, no. 4, pp. 269–279.

    Article  Google Scholar 

  57. Filei, A.A., Davidenko, A.N., Kiseleva, Yu.V., Kozlov, D.A., and Kholodov, E.I., Validation of results of atmospheric temperature and humidity sounding with a Fourier infrared spectrometer onboard the Meteor-M No. 2 satellite, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 3, pp. 216–221.

    Article  Google Scholar 

  58. Filei, A.A., Andreev, A.I., and Uspensky, A.B., The use of artificial neuron networks for retrieval temperature and humidity sounding of the atmosphere according to the data of the MTVZA-GY microwave radiometer installed on the Meteor-M No. 2-2 satellite, Izv., Atmos. Ocean. Phys., 2021b, vol. 57, no. 12, pp. 1515–1526.

    Article  Google Scholar 

  59. Filei, A.A., Andreev, A.I., Kuchma, M.O., and Uspensky, A.B., Retrieval of total precipitable water from Meteor-M No. 2-2 MTVZA-GYa data using a neural network algorithm, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 4, pp. 272–280.

    Article  Google Scholar 

  60. Finenko, A.A., Bézard, B., Gordon, I.E., Chistikov, D.N., Lokshtanov, S.E., Petrov, S.V., and Vigasin, A.A., Trajectory-based simulation of far-infrared collision-induced absorption profiles of CH4–N2 for modeling Titan’s atmosphere, Astrophys. J., Suppl. Ser., 2022, vol. 258, p. 33.

    Article  ADS  CAS  Google Scholar 

  61. Firsov, K.M., Chesnokova, T.Yu., and Razmolov, A.A., The influence of aerosol and clouds on underlying surface parameters measured by Sentinel-2A in the Lower Volga region, Atmos. Oceanic Opt., 2021, vol. 34, no. 4, pp. 335–340.

    Article  Google Scholar 

  62. Firsov, K.M., Chesnokova, T.Yu., and Razmolov, A.A., Impact of water vapor continuum absorption on CO2 radiative forcing in the atmosphere in the Lower Volga region, Atmos. Oceanic Opt., 2023, vol. 36, no. 2, pp. 162–168.

    Article  ADS  CAS  Google Scholar 

  63. Fleurbaey, H., Grilli, R., Mondelain, D., Kassi, S., Yachmenev, A., Yurchenko, S.N., and Campargue, A., Electric-quadrupole and magnetic-dipole contributions to the v2 + v3 band of carbon dioxide near 3.3 µm, J. Quant. Spectrosc. Radiat. Transfer, 2021, vol. 266, p. 107558.

    Article  CAS  Google Scholar 

  64. Fomin, B.A., Efficient line-by-line technique for calculating accurate and compact spectral lookup tables for satellite remote sensing, Int. J. Remote Sens., 2021, vol. 42, no. 8, pp. 3074–3089.

    Article  Google Scholar 

  65. Fomin, B.A. and Kolokutin, G.E., New HITRAN-2016 spectroscopic database for line-by-line models used in remote sensing of the Earth by infrared spectrometry, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2019, vol. 16, no. 1, pp. 17–24.

    Article  Google Scholar 

  66. Frolova, E.A., Nesterov, E.S., and Salagina, A.A., Using Arktika-M No. 1 satellite MSU-GS data for monitoring and analyzing mesoscale cyclones in the Arctic region, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2022, vol. 19, no. 4, pp. 293–305.

    Article  Google Scholar 

  67. Girina, O.A., Lupyan, E.A., Manevich, A.G., Mel’nikov, D.V., Kramareva, L.S., Romanova, I.M., Nuzhdaev, A.A., Kashnitskii, A.V., Marchenkov, V.V., Uvarov, I.A., Mal’kovskii, S.I., and Korolev, S.P., Remote observations of the 2019–2020 explosive-effusive eruption of Klyuchevskoi volcano, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2021, vol. 18, no. 1, pp. 81–91.

    Article  Google Scholar 

  68. Girina, O.A., Lupyan, E.A., Mel’nikov, D.V., Kashnitskii, A.V., Uvarov, I.A., Bril’, A.A., Konstantinova, A.M., Burtsev, M.A., Manevich, A.G., Gordeev, E.I., Kramareva, L.S., Sorokin, A.A., Mal’kovskii, S.I., and Korolev, S.P., Creation and development of the information system “Remote Monitoring of Kamchatka and Kuril Islands Volcanic Activity”, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2019, vol. 16, no. 3, pp. 249–265.

    Article  Google Scholar 

  69. Golobokova, L.P., Khodzher, T.V., Izosimova, O.N., Zenkova, P.N., Pochyufarov, A.O., Khuriganowa, O.I., Onishyuk, N.A., Marinayte, I.I., Polkin, V.V., Radionov, V.F., Sakerin, S.M., Lisitzin, A.P., and Shevchenko, V.P., Chemical composition of atmospheric aerosol in the arctic region and adjoining seas along the routes of marine expeditions in 2018–2019, Atmos. Oceanic Opt., 2020, vol. 33, no. 5, pp. 480–489.

    Article  ADS  CAS  Google Scholar 

  70. Golomolzin, V.V., Rublev, A.N., Kiseleva, Yu.V., Kozlov, D.A., Prokushkin, A.S., and Panov, A.V., Retrieval of total column carbon dioxide over Russia from Meteor-M No. 2 satellite data, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 4, pp. 304–314.

    Article  Google Scholar 

  71. Gorbarenko, E.V., Sunshine variability in Moscow in 1955–2017, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 6, pp. 384–393.

    Article  Google Scholar 

  72. Gorbarenko, E.V., Radiation climate of Moscow, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 7, pp. 478–487.

    Article  Google Scholar 

  73. Gorchakov, G.I., Buntov, D.V., Karpov, A.V., Kopeikin, V.M., Mirsaitov, S.F., Gushchin, R.A., and Datsenko, O.I., The saltating particle aleurite mode in wind-sand flux over a desertified area, Dokl. Earth Sci., 2019a, vol. 488, no. 1, pp. 1103–1106.

    Article  ADS  CAS  Google Scholar 

  74. Gorchakov, G.I., Sitnov, S.A., Karpov, A.V., Gorchakova, I.A., Gushchin, R.A., and Datsenko, O.I., Eurasian large-scale hazes in summer 2016, Izv., Atmos. Ocean. Phys., 2019b, vol. 55, no. 3, pp. 261–270.

    Article  Google Scholar 

  75. Gorchakov, G.I., Karpov, A.V., Gorchakova, I.A., Gushchi-n, R.A., and Datsenko, O.I., Smog and smoke haze over the North China plain in June 2007, Atmos. Oceanic Opt., 2019c, vol. 32, no. 6, pp. 643–649.

    Article  Google Scholar 

  76. Gorchakov, G.I., Buntov, D.V., Karpov, A.V., Gushchin, R.A., and Datsenko, O.I., Wind effect on the size distribution of saltating particles, Atmos. Oceanic Opt., 2020a, vol. 33, no. 2, pp. 198–205.

    Article  Google Scholar 

  77. Gorchakov, G.I., Karpov, A.V., and Gushchin, R.A., Turbulent fluxes of the dust aerosol on the desertified area, Dokl. Earth Sci., 2020b, vol. 494, pp. 799–802.

    Article  ADS  CAS  Google Scholar 

  78. Gorchakov, G.I., Karpov, A.V., Gushchin, R.A., Datsenko, O.I., and Buntov, D.V., Vertical profiles of the saltating particle concentration on a desertified area, Dokl. Earth Sci., 2021a, vol. 496, no. 2, pp. 119–124.

    Article  ADS  CAS  Google Scholar 

  79. Gorchakov, G.I., Karpov, A.V., Gushchin, R.A., Datsenko, O.I., and Buntov, D.V., Vertical distribution of aleurite and sand particles in windsand flux over a desertified area, Izv., Atmos. Ocean. Phys., 2021b, vol. 57, no. 5, pp. 486–494.

    Article  Google Scholar 

  80. Gorchakov, G.I., Karpov, A.V., Gushchin, R.A., Datsenko, O.I., and Buntov, D.V., Stratification of aleurite and sand particle size distribution in windsand flux over desertified areas, Atmos. Oceanic Opt., 2021c, vol. 34, no. 5, pp. 438–442.

    Article  ADS  Google Scholar 

  81. Gorchakov, G.I., Kopeikin, V.M., Karpov, A.V., Gushchi-n, R.A., Datsenko, O.I., and Buntov, D.V., Wind-sand flux electrization over desertified areas, Dokl. Earth Sci., 2022a, vol. 505, pp. 483–488.

    Article  ADS  CAS  Google Scholar 

  82. Gorchakov, G.I., Kopeikin, V.M., Karpov, A.V., Gushc-hin, R.A., Datsenko, O.I., and Buntov, D.V., Dusty plasma of a wind-sand flux in desertified areas, Izv., Atmos. Ocean. Phys., 2022b, vol. 58, no. 5, pp. 466–475.

    Article  Google Scholar 

  83. Gorchakov, G.I., Datsenko, O.I., Kopeikin, V.M., Karpov, A.V., Gushchin, R.A., Gorchakova, I.A., Mirsaitov, S.F., and Ponomareva, T.Y., Dust haze over the North China plain, Atmos. Oceanic Opt., 2022c, vol. 35, no. 2, pp. 125–132.

    Article  ADS  CAS  Google Scholar 

  84. Gordon, I.E., Rothman, L.S., Hargreaves, R.J., Hashemi, R., Karlovets, E.V., Skinner, F.M., Conway, E.K., Hill, C., Kochanov, R.V., Tan, Y., Wcislo, P., Finenko, A.A., Nelson, K., Bernath, P.F., Birk, M., et al., The Hitran2020 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 2022, vol. 277, p. 107949.

    Article  CAS  Google Scholar 

  85. Grebennikov, V.S., Zubachev, D.S., Korshunov, V.A., Sakhibgareev, D.G., and Chernikh, I.A., Observations of stratospheric aerosol at Rosgidromet lidar stations after the eruption of the Raikoke Volcano in June 2019, Atmos. Oceanic Opt., 2020, vol. 33, no. 5, pp. 519–523.

    Article  ADS  CAS  Google Scholar 

  86. Gribanov, K.G., Zadvornykh, I.V., and Zakharov, V.I., On the feasibility of 13CO2 retrieval from the spectra of satellite Fourier transform spectrometers of the IASI/METO-P type, Atmos. Ocean Opt., 2021, vol. 34, no. 1, pp. 1–5.

    Article  CAS  Google Scholar 

  87. Ionov, D.V. and Poberovskii, A.V., Variability of nitrogen oxides in the atmospheric surface layer near Saint Petersburg, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 10, pp. 720–726.

    Article  Google Scholar 

  88. Ionov, D.V. and Privalov, V.I., The differential spectroscopy technique DOAS in the problem of determining the total ozone content from measurements of ground-based UV spectrometer UFOS, Amos. Oceanic Opt., 2022a, vol. 35, no. 1, pp. 1–7.

    Article  ADS  CAS  Google Scholar 

  89. Ionov, D.V., Makarova, M.V., Hase, F., Foka, S.C., Kostsov, V.S., Alberti, C., Blumenstock, T., Warneke, T., and Virolainen, Y.A., The CO2 integral emission by the megacity of St. Petersburg as quantified from ground-based FTIR measurements combined with dispersion modelling, Atmos. Chem. Phys., 2021, vol. 21, no. 14, pp. 10939–10963.

    Article  ADS  CAS  Google Scholar 

  90. Ionov, D.V., Makarova, M.V., Kostsov, V.S., and Foka, S.F., Assessment of the nox integral emission from the St. Petersburg megacity by means of mobile DOAS measurements combined with dispersion modelling, Atmos. Pollut. Res., 2022, vol. 13, no. 12, p. 101598.

    Article  CAS  Google Scholar 

  91. Ivakhov, V.M., Paramonova, N.N., Privalov, V.I., Zinchenko, A.V, Loskutova, M.A., Makshtas, A.P., Kustov, V.A., Laurila, T., Aurela, M., and Asmi, E., Atmospheric concentration of carbon dioxide at Tiksi and Cape Baranov stations in 2010–2017, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 4, pp. 291–299.

    Article  Google Scholar 

  92. Ivanov, V.N., Zubachev, D.S., Korshunov, V.A., and Sakhibgareev, D.G., Network lidar AK-3 for middle atmosphere sensing: Design, methods of measurements, results, in Proceedings of MGO, 2020, vol. 598, pp. 155–187.

    Google Scholar 

  93. Jacquemart, D., Lyulin, O.M., Solodov, A.M., Petrova, T.M., and Solodov, A.A., The Q-branch of v1+ v3+3v4 band of 12C2H2 located at 8330 cm–1, J. Quant. Spectrosc. Radiat. Transfer, 2022, vol. 288, p. 108272.

    Article  CAS  Google Scholar 

  94. Kabanov, D.M., Sakerin, S.M., and Turchinovich, Yu.S., Interannual and seasonal variations in the atmospheric aerosol optical depth in the region of Tomsk (1995–2018), Atmos. Oceanic Opt., 2019, vol. 32, no. 6, pp. 663–670.

    Article  Google Scholar 

  95. Kabanov, D.M., Ritter, C., and Sakerin, S.M., Interannual and seasonal variations in aerosol optical depth of the atmosphere in two regions of Spitsbergen Archipelago (2002–2018), Atmos. Meas. Tech., 2020, vol. 13, pp. 5303–5317.

    Article  Google Scholar 

  96. Karpov, A.V., Gorchakov, G.I., Gushchin, R.A., and Datsenko, O.I., Vertical turbulent dust-aerosol fluxes, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 5, pp. 495–503.

    Article  Google Scholar 

  97. Kataev, M.Yu. and Dadonova, M.M., A vegetation recognition technique based on color and texture analysis of RGB images, Svetotekhnika, 2019, no. 2, pp. 34–39.

  98. Kataev, M.Yu., Dadonova, M.M., and Efremenko, D.C., Illumination correction for multi-temporal RGB images obtained by an unmanned aerial vehicle, Svetotekhnika, 2020, no. 6, pp. 19–25.

  99. Kataev, M.Yu., Kartashov, E.Yu., and Karpov, R.K., Methodology for assessing the color quality of brick production on the basis of RGB images, Svetotekhnika, 2022, no. 3, pp. 63–67.

  100. Kazakov, K.V. and Vigasin, A.A., Vibrational magnetism and the strength of magnetic dipole transition within the electric dipole forbidden v2+v3 absorption band of carbon dioxide, Mol. Phys., 2021, vol. 119, p. e1934581.

    Article  ADS  Google Scholar 

  101. Konovalov, I.B., Golovushkin, N.A., Beekmann, M., Panchenko, M.V., and Andreae, M.O., Inferring the absorption properties of organic aerosol in Siberian biomass burning plumes from remote optical observations, Atmos. Meas. Tech., 2021, vol. 14, no. 10, pp. 6647–6673.

    Article  CAS  Google Scholar 

  102. Koroleva, A.O., Odintsova, T.A., Tretyakov, M.Yu., Piral-i, O., and Campargue, A., The foreign-continuum absorption of water vapour in the far-infrared (50–500 cm–1), J. Quant. Spectrosc. Radiat. Transfer, 2021, vol. 261, p. 107486.

    Article  CAS  Google Scholar 

  103. Korshunov, V.A., Lidar observations of stratospheric aerosols at Obninsk in 2012–2021: Influence of volcanic eruptions and biomass burning, Fundam. Prikl. Klimatol., 2023, vol. 8, no. 3, pp. 31–51.

    Google Scholar 

  104. Korshunov, V.A., Multiple scattering in cirrus clouds and taking it into account when interpreting lidar measurements in the stratosphere, Atmos. Oceanic Opt., 2022, vol. 35, no. 2, pp. 151–157.

    Article  ADS  Google Scholar 

  105. Korshunov, V.A. and Zubachev, D.S., Characteristics of cirrus clouds from lidar measurements at Obninsk, in Proceeding of MGO, 2021, vol. 602, pp. 68–78.

  106. Korshunov, V.A. and Zubachev, D.S., Manifestation of solar activity effects in lidar observations of stratospheric aerosol, Geomagn. Aeron. (Engl. Transl.), 2022, vol. 62, no. 1, pp. 67–74.

  107. Koshelev, M.A., Vilkov, I.N., Makarov, D.S., Tretyakov, M.Yu., and Rosenkranz, P.W., Speed-dependent broadening of the O2 fine-structure lines, J. Quant. Spectrosc. Radiat. Transfer, 2021a, vol. 264, p. 107546.

    Article  CAS  Google Scholar 

  108. Koshelev, M.A., Vilkov, I.N., Makarov, D.S., Tretyakov, M.Yu., Vispoel, B., Gamache, R.R., Cimini, D., Romano, F., and Rosenkranz, P.W., Water vapor line profile at 183 GHz: Temperature dependence of broadening, shifting, and speed-dependent shape parameters, J. Quant. Spectrosc. Radiat. Transfer, 2021b, vol. 262, p. 107472.

    Article  CAS  Google Scholar 

  109. Koshelev, M.A., Golubyatnikov, G.Yu., Vilkov, I.N., and Tretyakov, M.Yu., Molecular oxygen fine structure with sub-kHz accuracy, J. Quant. Spectrosc. Radiat. Transfer, 2022, vol. 278, p. 108001.

    Article  CAS  Google Scholar 

  110. Kostornaya, A.A., Rublev, A.N., and Golomolzin, V.V., Retrieval of moisture content in a cloudless atmosphere over the ocean from measurement data of the MTVZA-GYa microwave radiometer, Vychisl. Tekhnol., 2020, vol. 25, no. 4, pp. 83–98.

    Google Scholar 

  111. Kostsov, V.S., Kniffka, A., Stenge, M., and Ionov, D.V., Cross-comparison of cloud liquid water path derived from observations by two space-borne and one ground-based instrument in Northern Europe, Atmos. Meas. Tech., 2019, vol. 12, no. 11, pp. 5927–5946.

    Article  Google Scholar 

  112. Kostsov, V.S., Ionov, D.V., and Kniffka, A., Detection of the cloud liquid water path horizontal inhomogeneity in a coastline area by means of ground-based microwave observations: Feasibility study, Atmos. Meas. Tech., 2020, vol. 13, no. 8, pp. 4565–4587.

    Article  Google Scholar 

  113. Kouzov, A.P., Sokolov, A.V., and Filippov, N.N., Non-Markovian approach to pressure broadening of isolated lines in spectra of light rotators, J. Quant. Spectrosc. Radiat. Transfer, 2022, vol. 278, p. 108043.

    Article  CAS  Google Scholar 

  114. Kozlov, D.A., Zavelevich, F.S., Timofeyev, Yu.M., Polyakov, A.V., Kozlov, I.A., and Cherkashin, I.S., Intercalibration of SI-1 and IKFS-2 spaceborne infrared Fourier transform spectrometers, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2019, vol. 16, no. 6, pp. 72–80.

    Article  Google Scholar 

  115. Kozlov, D.A., Kozlov, I.A., Uspensky, A.B., Rublev, A.N., Timofeyev, Yu.M., Polyakov, A.V., and Kolesnikov, M.V., Characterization of the noise covariance matrix of the IKFS-2 infrared Fourier transform spectrometer measurements, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 9, pp. 1160–1172.

    Article  Google Scholar 

  116. Kramareva, L.S., Andreev, A.I., Bloshchinskii, V.D., et al., The use of neural networks in hydrometeorological problems, Vychisl. Tekhnol., 2019, vol. 24, no. 6, pp. 50–59.

    Google Scholar 

  117. Kreher, K., Van Roozendael, M., Hendrick, F., Apituley, A., Dimitropoulou, E., Frieß, U., Richter, A., Wagner, T., Lampel, J., Abuhassan, N., Ang, L., Anguas, M., Bais, A., Benavent, N., Bosch T., et al., Intercomparison of NO2, O4, O3 and HCHO slant column measurements by MAX-DOAS and zenith-sky UV-visible spectrometers during CINDI-2, Atmos. Meas. Tech., 2020, vol. 13, no. 5, pp. 2169–2208.

    Article  CAS  Google Scholar 

  118. Kuchma, M.O. and Bloshchinskii, V.D., Algorithm for the atmospheric correction of shortwave channels of the MSU-MR radiometer of the Meteor-M No. 2 satellite, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 9, pp. 909–915.

    Article  Google Scholar 

  119. Kuchma, M.O. and Shamilova, Yu.A., Operational detection of potential fog using Himawari-8 geostationary satellite data, Gidrometeorol. Issled. Prognozy, 2022a, no. 3, pp. 113–126.

  120. Kuchma, M.O., Kholodov, E.I., and Amel’chenko, Yu.A., Two-channel algorithm for determining the aerosol optical depth over the sea surface using the MSU-MR radiometer of the Meteor-M No. 2 satellite, Izv., Atmos. Ocean. Phys., 2022b, vol. 58, no. 9, pp. 1194–1199.

    Article  Google Scholar 

  121. Kulikov, M.Yu. and Belikovich, M.V., Nighttime O(1D) distributions in the mesopause region derived from SABE-R data, Ann. Geophys., 2020a, vol. 38, pp. 815–822.

    Article  ADS  CAS  Google Scholar 

  122. Kulikov, M.Yu., Feigin, A.M., and Schrems, O., H2O2 photoproduction inside H2O and H2O:O2 ices at 20–140 K, Sci. Rep., 2019, vol. 9, p. 11375.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  123. Kulikov, M.Yu., Nechaev, A.A., Belikovich, M.V., Vorobeva, E.V., Grygalashvyly, M., Sonnenmann, G.R., and Feigin, A.M., Boundary of nighttime ozone chemical equilibrium in the mesopause region from SABER data: Implications for derivation of atomic oxygen and atomic hydrogen, Geophys. Res. Lett., 2019a, vol. 46, no. 2, pp. 997–1004.

    Article  ADS  CAS  Google Scholar 

  124. Kulikov, M.Yu., Belikovich, M.V., Skalyga, N.K., Shatalina, M.V., Dementyeva, S.O., Ryskin, V.G., Shvetsov, A.A., Krasil’nikov, A.A., Serov, E.A., and Feigin, A.M., Skills of thunderstorm prediction by convective indices over a metropolitan area: Comparison of microwave and radiosonde data, Remote Sens., 2020, vol. 12, no. 4, p. 604.

    Article  ADS  Google Scholar 

  125. Kulikov, M.Y., Belikovich, M.V., and Feigin, A.M., The 2‑day photochemical oscillations in the mesopause region: The first experimental evidence?, Geophys. Res. Lett., 2021, vol. 48, p. e2021GL092795.

  126. Kulikov, M.Yu., Belikovich, M.V., Grygalashvyly, M., et al., Retrieving daytime distributions of O, H, OH, HO2, and chemical heating rate in the mesopause region from satellite observations of ozone and OH* volume emission: The evaluation of the importance of the reaction H + O3 → O2 + OH in the ozone balance, Adv. Space Res., 2022a, vol. 69, no. 9, pp. 3362–3373.

    Article  ADS  CAS  Google Scholar 

  127. Kulikov, M.Y., Belikovich, M.V., Grygalashvyly, M., Sonnenmann, G.R., and Feigin, A.M., The revised method for retrieving daytime distributions of atomic oxygen and odd-hydrogens in the mesopause region from satellite observations, Earth Planets Space, 2022b, vol. 74, p. 44.

    Article  ADS  Google Scholar 

  128. Lavrentieva, N.N. and Dudaryonok, A.S., Nitrogen dioxide line shift coefficients induced by air pressure, Mol. Phys., 2022, vol. 120, no. 9, p. 2052370.

    Article  ADS  Google Scholar 

  129. Lutsch, E., Strong, K., Jones, D.B.A., Blumenstock, T., Conway, S., Fisher, J.A., Hannigan, J.W., Hase, F., Kasai, Y., Mahieu, E., Makarova, M., Morino, I., Nagahama, T., Notholt, J., Ortega, I., et al., Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-transform infrared spectrometers and GEOS-Chem, Atmos. Chem. Phys., 2020, vol. 20, no. 21, pp. 12813–12851.

    Article  ADS  CAS  Google Scholar 

  130. Makarov, D.S., Tretyakov, M.Yu., and Rosenkranz, P.W., Revision of the 60-GHz atmospheric oxygen absorption band models for practical use, J. Quant. Spectrosc. Radiat. Transfer, 2020, vol. 242, p. 106798.

    Article  Google Scholar 

  131. Makarova, M.V., Serdyukov, V.I., Arshinov, M.Yu., Bel-an, B.D., Voronin, B.A., Nikitin, A.V., Shcherbakov, A.P., and Gridnev, Yu.V., The first complex experiment on determining parameters of the vertical distribution of methane in the troposphere over Western Siberia from solar spectra recorded with an IFS-125M FTIR spectrometer and in situ aircraft measurements, Atmos. Oceanic Opt., 2021a, vol. 34, no. 1, pp. 61–67.

    Article  ADS  CAS  Google Scholar 

  132. Makarova, M.V., Alberti, C., Ionov, D.V., Hase, F., Foka, S.C., Blumenstock, T., Warneke, T., Virolainen, Ya.A., Kostsov, V.S., Frey, M., Poberovskii, A.V., Timofeyev, Yu.M., Paramonova, N.N., Volkova, K.A., Zaitsev, N.A., et al., Emission Monitoring Mobile Experiment (EMME): An overview and first results of the St. Petersburg megacity campaign-2019, Atmos. Meas. Tech., 2021, vol. 14, no. 2, pp. 1047–1073.

    Article  CAS  Google Scholar 

  133. Marichev, V.N. and Bochkovskii, D.A., Lidar studies of winter stratospheric warming over Tomsk, in Proc. SPIE, 2020, vol. 11560, p. 11156087.

    Google Scholar 

  134. Marichev, V.N. and Bochkovskii, D.A., Lidar monitoring of stratospheric aerosol over Tomsk in 2021, in Proc. SPIE, 28th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 2022a, vol. 12341, p. 123417A.

  135. Marichev, V.N. and Bochkovskii, D.A., Investigations of the thermal regime of the stratosphere over Tomsk in 2021 based on lidar monitoring, in Proc. SPIE, 28th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 2022b, vol. 12341, p. 123417B.

  136. Marichev, V.N. and Bochkovskii, D.A., Lidar complex of a small station for high-altitude atmospheric sensing of the IAO SB RAS, Opt. Atmos. Okeana, 2020a, vol. 33, no. 5, pp. 399–406.

    Google Scholar 

  137. Marichev, V.N., Bochkovskii, D.A., and Elizarov, A.I., Optical aerosol model of the Western Siberian stratosphere based on lidar monitoring results, Atmos. Oceanic Opt., 2022, vol. 35, no. S1, pp.S64–S69.

    Article  ADS  Google Scholar 

  138. Mikhailov, E.F. and Vlasenko, S.S., High-humidity tandem differential mobility analyzer for accurate determination of aerosol hygroscopic growth, microstructure, and activity coefficients over a wide range of relative humidity, Atmos. Meas. Tech., 2020, vol. 13, no. 4, pp. 2035–2056.

    Article  CAS  Google Scholar 

  139. Mikhailov, E.F., Pöhlker, M.L., Reinmuth-Selzle, K., Vlasenko, S.S., Krüger, O.O., Fröhlich-Nowoisky, J., Pöhlker, C., Ivanova, O.A., Kiselev, A.A., Kremper, L.A., and Pöschl, U., Water uptake of subpollen aerosol particles: Hygroscopic growth, cloud condensation nuclei activation, and liquid-liquid phase separation, Atmos. Chem. Phys., 2021, vol. 21, no. 9, pp. 6999–7022.

    Article  ADS  CAS  Google Scholar 

  140. Mukhartova, Y.V., Davydova, M.A., Elansky, N.F., et al., On application of nonlinear reaction-diffusion-advection models to simulation of transport of chemically-active impurities, Proc. SPIE, 2019, vol. 11157, p. 111570X. https://doi.org/10.1117/12.2535489

    Article  Google Scholar 

  141. Mukhartova, Y.V., Postylyakov, O.V., Davydova, M.A., Elansky, N.F., Postylyakov, O.V., Zakharova, S.A., and Borovski, A.N., High-detailed tropospheric transport of NOx from ground sources: comparison of model data and satellite imagery, Proc. SPIE, 2021, vol. 11859, p. 1185906.

    Google Scholar 

  142. Nerobelov, G.M. and Timofeyev, Yu.M., Estimates of CO2 emissions and uptake by the water surface near St. Petersburg megalopolis, Atmos. Oceanic Opt., 2021a, vol. 34, no. 5, pp. 422–427.

    Article  ADS  CAS  Google Scholar 

  143. Nerobelov, G.M., Timofeyev, Yu.M., Smyshlyaev, S.P., Virolainen, Ya.A., Makarova, M.V., and Foka, S.C., Comparison of CAMS data on CO2 with measurements in Peterhof, Atmos. Oceanic Opt., 2021b, vol. 34, no. 6, pp. 689–694.

  144. Nerobelov, G., Timofeyev, Y., Smyshlyaev, S., Foka, S., Mammarella, I., and Virolainen, Y., Validation of WRF-Chem model and CAMS performance in estimating near-surface atmospheric CO2 mixing ratio in the area of Saint Petersburg (Russia), Atmosphere, 2021, vol. 12, no. 3, p. 387.

    Article  ADS  CAS  Google Scholar 

  145. Nerobelov, G.M., Al-Subari, O., Timofeyev, Yu.M., Virolainen, Ya.A., Poberovskii, A.V., and Solomatnikova, A.A., Comparison of ground-based measurement results of total ozone near St. Petersburg, Izv., Atmos. Ocean. Phys., 2022a, vol. 58, no. 5, pp. 494–499.

    Article  Google Scholar 

  146. Nerobelov, G.M., Timofeyev, Yu.M., Poberovskii, A.V., Filippov, N.N., and Imhasin, H.H., Ground-based spectroscopic measurements of the total ammonia content in the vicinity of St. Petersburg, Izv., Atmos. Ocean. Phys., 2022b, vol. 58, no. 6, pp. 560–568.

    Article  Google Scholar 

  147. Nerobelov, G., Timofeyev, Y., Virolainen, Y., Polyakov, A., Solomatnikova, A., Poberovskii, A., Kirner, O., Al-Subari, O., Smyshlyaev, S., and Rozanov, E., Measurements and modelling of total ozone columns near St. Petersburg, Russia, Remote Sens., 2022, vol. 14, no. 16. P. 3944.

    Article  ADS  Google Scholar 

  148. Nerushev, A.F. and Ivangorodsky, R.V., Determination of turbulence zones in the upper troposphere based on satellite measurements, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2019a, vol. 16, no. 1, pp. 205–215.

    Article  Google Scholar 

  149. Nerushev, A.F., Visheratin, K.N., and Ivangorodsky, R.V., Dynamics of high-altitude jet streams from satellite measurements and their relationship with climatic parameters and large-scale atmospheric phenomena, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 9, pp. 1198–1209.

    Article  Google Scholar 

  150. Nerushev, A.F., Visheratin, K.N., and Ivangorodsky, R.V., Characteristics of the upper troposphere wind field according to the satellite measurements and their connection with climatic parameters, IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 606, p. 012041.

  151. Nerushev, A.F., Visheratin, K.N., and Ivangorodsky, R.V., Statistical model of the time variability of the characteristics of high-altitude jet currents in the Northern Hemisphere based on satellite measurements, Izv., Atmos. Ocean. Phys., 2021a, vol. 57, no. 4, pp. 354–364.

    Article  Google Scholar 

  152. Nerushev, A.F., Visheratin, K.N., Kulizhnikova, L.K., and Ivangorodsky, R.V., The relationship of surface air temperature anomalies and the characteristics of high-altitude jet streams, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2021b, vol. 18, no. 1, pp. 199–209.

    Article  Google Scholar 

  153. Nerushev, A.F., Visheratin, K.N., and Ivangorodsky, R.V., Satellite-derived estimations of the clear-air turbulence in the upper troposphere, IOP Conf. Ser.: Earth Environ. Sci., 2022, vol. 1040, p. 012025.

  154. Nevzorov, A.V., Dolgii, S.I., Makeev, A.P., and El’nikov, A.V., Results of observations of aerosol from North American forest fires in the stratosphere over Tomsk in late summer and fall of 2017, Opt. Atmos. Okeana, 2019, vol. 32, no. 2, pp. 162–167.

    Google Scholar 

  155. Nikitenko, A.A., Timofeev, Yu.M., Berezin, I.A., Virolainen, Ya.A., and Polyakov, A.V., The analysis of OCO-2 satellite measurements of CO2 in the vicinity of Russian cities, Atmos. Oceanic Opt., 2020, vol. 33, no. 6, pp. 650–655.

    Article  ADS  CAS  Google Scholar 

  156. Nikitenko, A.A., Nerobelov, G.M., Timofeev, Yu.M., and Poberovskii, A.V., Analysis of ground-based spectroscopic measurements of CO2 in Peterhof, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2021, vol. 18, no. 6, pp. 265–272.

    Article  Google Scholar 

  157. Nikitenko, A.A., Timofeev, Yu.M., Virolainen, Ya.A., Nerobelov, G.M., and Poberovskii, A.V., Comparison of stratospheric CO2 measurements by ground- and satellite-based methods, Atmos. Oceanic Opt., 2022, vol. 35, no. 4, pp. 341–344.

    Article  ADS  CAS  Google Scholar 

  158. Nikitin, S.V., Chulichkov, A.I., Borovski, A.N., and Postylyakov, O.V., Estimation of cloudiness and aerosol characteristics in the atmosphere from spectral measurements of scattered solar radiation using a neural network, Proc. SPIE, 2019, vol. 11152, p. 111521H.

    Google Scholar 

  159. Nikitin, S.V., Chulichkov, A.I., Borovski, A.N., and Postylyakov, O.V., On estimation of atmospheric scattering characteristics from spectral measurements of solar radiation using machine learning algorithms, Proc. SPIE, 2020, vol. 11531, vol. 115310V.

  160. Odintsova, T.A., Tretyakov, M.Yu., Zibarova, A.O., Pirali, O., Roy, P., and Campargue, A., Far-infrared self-continuum absorption of H2 16O and H2 18O (15–500 cm–1), J. Quant. Spectrosc. Radiat. Transfer, 2019, vol. 227, pp. 190–200.

    Article  ADS  CAS  Google Scholar 

  161. Odintsova, T.A., Tretyakov, M.Yu., Simonova, A.A., Ptashnik, I.V., Pirali, O., and Campargue, A., Measurement and temperature dependence of the water vapor self-continuum between 70 and 700 cm–1, J. Mol. Struct., 2020, vol. 1210, p. 128046.

    Article  CAS  Google Scholar 

  162. Odintsova, T.A., Serov, E.A., Balashov, A.A., Koshelev, M.A., Koroleva, A.O., Simonova, A.A., Tretyakov, M.Yu., Filippov, N.N., Chistikov, D.N., Finenko, A.A., Lokshtanov, S.E., Petrov, S.V., and Vigasin, A.A., CO2–CO2 and CO2–Ar continua at millimeter wavelengths, J. Quant. Spectrosc. Radiat. Transfer, 2021, vol. 258, p. 107400.

    Article  CAS  Google Scholar 

  163. Odintsova, T.A., Koroleva, A.O., Simonova, A.A., Campargue, A., and Tretyakov, M.Yu., The atmospheric continuum in the “terahertz gap” region (15–700 cm–1): Review of experiments at SOLEIL synchrotron and modeling, J. Mol. Spectrosc., 2022, vol. 386, p. 111603.

    Article  CAS  Google Scholar 

  164. Oparin, D.V., Filippov, N.N., Grigoriev, I.M., and Kouzov, A.P., Non-empirical calculations of rotovibrational band wings: Carbon dioxide–rare gas mixtures, J. Quant. Spectrosc. Radiat. Transfer, 2020, vol. 247, p. 106950.

    Article  CAS  Google Scholar 

  165. Panchenko, M.V., Pol’kin, V.V., Pol’kin, Vas.V., Kozlov, V.S., Yausheva, E.P., and Shmargunov, V.P., Size distribution of dry matter of particles in the surface atmospheric layer in the suburban region of Tomsk within the empirical classification of aerosol weather types, Atmos. Oceanic Opt., 2019, vol. 32, no. 6, pp. 655–662.

    Article  Google Scholar 

  166. Panchenko, M.V., Kabanov, M.V., Pkhalagov, Yu.A., Belan, B.D., Kozlov, V.S., Sakerin, S.M., Kabanov, D.M., Uzhegov, V.N., Shchelkanov, N.N., Pol’kin, V.V., Terpugova, S.A., Tolmachev, G.N., Yausheva, E.P., Arshinov, M.Yu., Simonenkov, D.V., et al., Integrated studies of tropospheric aerosol at the Institute of Atmospheric Optics (development stages), Atmos. Oceanic Opt., 2020a, vol. 33, no. 1, pp. 27–41.

    Article  Google Scholar 

  167. Panchenko, M.V., Kozlov, V.S., Polkin, V.V., Polkin, Vas.V., Terpugova, S.A., Uzhegov, V.N., Chernov, D.G., Shmargunov, V.P., Yausheva, E.P., and Zenkova, P.N., Aerosol characteristics in the near-ground layer of the atmosphere of the city of Tomsk in different types of aerosol weather, Atmosphere, 2020, vol. 11, no. 1, pp. 20–39.

    Article  ADS  Google Scholar 

  168. Panchenko, M.V., Yausheva, E.P., Chernov, D.G., Kozlov, V.S., Makarov, V.I., Popova, S.A., and Shmargunov, V.P., Submicron aerosol and black carbon in the troposphere of Southwestern Siberia (1997–2018), Atmosphere, 2021, vol. 12, no. 3, pp. 351–370.

    Article  ADS  CAS  Google Scholar 

  169. Paramonova, N.N., Privalov, V.I., Ivakhov, V.M., Rusina, E.N., Bobrova, V.K., Sokolenko, L.G., Zainetdinov, B.G., Solomatnikova, A.A., Romashkina, K.I., Volokhina, D.Yu., Vyazankin, A.S., Tsvetkova, N.D., Bankova, T.V., Kiryushov, B.M., Luk’yanov, A.N., et al., Physical and chemical characteristics of the atmosphere, in Obzor fonovogo sostoyaniya okruzhayushchei prirodnoi sredy na territorii stran SNG za 2019 g. Ezhegodnyi obzor (Review of the Background State of the Natural Environment in CIS countries for 2019. Annual Review), Chernogaeva, G.M., Ed., Moscow, 2020, pp. 13–30.

  170. Pastukhova, A.S., Chubarova, N.E., Zhdanova, Y.Y., Galin, V.Y., and Smyshlyaev, S.P., The forecast of erythemal UV irradiance over the territory of Northern Eurasia according to the INM-RSHU chemical-climate model, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 3, pp. 242–250.

    Article  Google Scholar 

  171. Petäjä, T., Duplissy, E.-M., Tabakova, K., Schmale, J., Altstädter, B., Ancellet, G., Arshinov, M., Balin, Y., Baltensperger, U., Bange, J., Beamish, A., Belan, B., Berchet, A., Bossi, R., Cairns, W.R.L., et al., Overview: Integrative and comprehensive understanding on polar environments (iCUPE): Concept and initial results, Atmos. Chem. Phys., 2020, vol. 20, no. 14, pp. 8551–8592.

    Article  ADS  Google Scholar 

  172. Pokrovsky, O.M., Cloud changes in the period of global warming: The results of the international satellite project, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 9, pp. 1189–1197.

    Article  Google Scholar 

  173. Pokrovsky, O.M. and Pokrovsky, I.O., Identifying a fundamental climatic oscillation using wavelet analysis of the combined data of ground and satellite observations, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 9, pp. 1127–1136.

    Article  Google Scholar 

  174. Pokrovsky, O.M. and Pokrovsky, I.O., Coherence of fluctuations of components of the global climate system with slow fluctuations of solar activity according to ground-based and satellite observations, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 9, pp. 1131–1142.

    Article  Google Scholar 

  175. Pol’kin, V.V. and Panchenko, M.V., Time variations in submicron and coarse particle concentrations in the surface air layer at the aerosol station of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk (2000–2020), Atmos. Oceanic Opt., 2022, vol. 35, no. 6, pp. 661–666.

    Article  ADS  Google Scholar 

  176. Pol’kin, Vas.V., Pol’kin, V.V., and Panchenko, M.V., Long-term observations of aureole scattering phase function in the surface air layer in suburbs of Tomsk (2010–2021), Atmos. Oceanic Opt., 2023, vol. 36, no. 2, pp. 121–126.

    Article  ADS  Google Scholar 

  177. Poliukhov, A.A., Chubarova, N.Y., and Volodin, E.M., Impact of inclusion of the indirect effects of sulfate aerosol on radiation and cloudiness in the INMCM model, Izv., Atmos. Ocean. Phys., 2022, vol. 58, vol. 58, no. 5, pp. 486–493.

  178. Polyakov, A.V., Timofeev, Yu.M., Virolainen, Ya.A., and Kozlov, D.A., Monitoring of total ozone content in the atmosphere using the Russian IKFS-2 instrument, Zh. Prikl. Spektrosk., 2019a, vol. 86, no. 4, pp. 597–601.

    Google Scholar 

  179. Polyakov, A.V., Virolainen, Ya.A., and Makarova, M.V., Methodology for transparency spectra reversal to estimate the content of Freon CCl2F2 in the atmosphere, Zh. Prikl. Spektrosk., 2019, vol. 86, no. 3, pp. 417–424.

    Google Scholar 

  180. Polyakov, A.V., Poberovskii, A.V., Virolainen, Ya.A., and Makarova, M.V., Methodology for transparency spectra reversal to estimate the content of Freon CCl3F in the atmosphere, Zh. Prikl. Spektrosk., 2020a, vol. 86, no. 1, pp. 108–115.

    Google Scholar 

  181. Polyakov, A., Virolainen, Ya., Poberovskiy, A., Makarova, M., and Timofeyev, Yu., Atmospheric HCFC-22 total columns near St. Petersburg: Stabilization with start of a decrease, Int. J. Remote Sens., 2020, vol. 41, no. 11, pp. 4365–4371.

    Article  Google Scholar 

  182. Polyakov, A., Poberovsky, A., Makarova, M., Virolainen, Y., Timofeyev, Y., and Nikulina, A., Measurements of CFC-11, CFC-12, and HCFC-22 total columns in the atmosphere at the St. Petersburg site in 2009–2019, Atmos. Meas. Tech., 2021, vol. 14, no. 8, pp. 5349–5368.

    Article  CAS  Google Scholar 

  183. Polyakov, A., Virolainen, Y., Nerobelov, G., Timofeyev, Y., and Solomatnikova, A., Total ozone measurements using IKFS-2 spectrometer aboard meteor M N2 satellite in 2019–2020, Int. J. Remote Sens., 2021a, vol. 42, no. 22, pp. 8709–8733.

    Article  Google Scholar 

  184. Postylyakov, O.V., Borovski, A.N., Elansky, N.F., Davydova, M.A., Zakharova, S.A., and Makarenkov, A.A., Comparison of space high-detailed experimental and model data on tropospheric NO2 distribution, Proc. SPIE, 2019a, vol. 11208, p. 112082S.

    Google Scholar 

  185. Postylyakov, O.V., Borovski, A.N., Davydova, M.A., et al., Preliminary validation of high-detailed GSA/Resurs-P tropospheric NO2 maps with alternative satellite measurements and transport simulations, Proc. SPIE, 2019b, vol. 11152, p. 111520F. https://doi.org/10.1117/12.2535487

    Article  Google Scholar 

  186. Postylyakov, O.V., Borovski, A.N., Shukurov, K.A., Muhartova, Y.V., Davydova, M.A., and Makarenkov, A.A., On validation high-detail mapping of tropospheric NO2 using GSA/Resurs-P observations with simulated data, Proc. SPIE, 2020a, vol. 11531, p. 1153109.

    Google Scholar 

  187. Postylyakov, O.V., Borovski, A.N., Chulichkov, A.I., and Nikitin, S.V., On estimation of cloudiness characteristics and parameters of DOAS retrieval from spectral measurements using a neural network, IOP Conf. Ser.: Earth and Environmental Science, 2020b, vol. 489, p. 012031.

  188. Ptashnik, I.V., Klimeshina, T.E., Solodov, A.A., and Vigasin, A.A., Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 µm bands, J. Quant. Spectrosc. Radiat. Transfer, 2019, vol. 228, pp. 97–105.

    Article  ADS  CAS  Google Scholar 

  189. Radionov, V.F., Kabanov, D.M., Pol’kin, V.V., Sakerin, S.M., and Izosimova, O.N., Aerosol characteristics over the Arctic seas of Eurasia: Results of measurements in 2018 and average spatial distribution in the summer–fall periods of 2007–2018, Probl. Arktiki Antarkt., 2019, vol. 65, no. 4, pp. 405–421.

    Article  Google Scholar 

  190. Radionov, V.F., Rusina, E.N., and Sibir, E.E., Long-term variability of integral and spectral transparency of the atmosphere at Mirny observatory, Antarctica, Russ. Meteorol. Hydrol., 2020a, vol. 45, no. 2, pp. 74–80.

    Article  Google Scholar 

  191. Radionov, V.F., Sidorova, O.R., Golobokova, L.P., Khuriganova, O.I., Khodzher, T.V., Sakerin, S.M., Kabanov, D.M., Chernov, D.G., Kozlov, V.S., and Panchenko, M.V., Aerosol component of the atmosphere in Barentsburg, in Current State of the Environment of the Svalbard Archipelago: Collective Monograph, Savatyugin, L.M., Ed., St. Petersburg: AARI, 2020, pp. 282–304.

    Google Scholar 

  192. Rakitin, V.S., Skorokhod, A.I., Pankratova, N.V., Shtabkin, Yu.A., Rakitina, A.V., Wang, G., Vasilieva, A.V., Makarova, M.V., and Wang, P., Recent changes of atmospheric composition in background and urban Eurasian regions in XXI century, IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 606, p. 012048.

  193. Rakitin, V.S., Elansky, N.F., Skorokhod, A.I., Dzhola, A.V., Rakitina, A.V., Shilkin, A.V., Kirillova, N.S., and Kazakov, A.V., Long-term tendencies of carbon monoxide in the atmosphere of the Moscow megapolis, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 1, pp. 116–125.

    Article  Google Scholar 

  194. Rublev, A., Kiseleva, Ju., Uspensky, A., Golomolzin, V., Gayfulin, D., and Tsyrulnikov, M., On-orbit calibration of Russian satellite instruments: New issues, GSICS Quart., 2021, vol. 15, no. 1, pp. 4–6.

    Google Scholar 

  195. Safatov, A.S., Andreeva, I.S., Buryak, G.A., Olkin, S.E., Reznikova, I.K., Belan, B.D., Panchenko, M.V., and Simonenkov, D.V., Long-term studies of biological components of atmospheric aerosol: Trends and variability, Atmosphere, 2022, vol. 13, no. 5, p. 651.

    Article  ADS  CAS  Google Scholar 

  196. Sakerin, S.M., Golobokova, L.P., Kabanov, D.M., Kalashnikova, D.A., Kozlov, V.S., Kruglinskii, I.A., Makarov, V.I., Makshtas, A.P., Popova, S.A., Radionov, V.F., Simonova, G.V., Turchinovich, Yu.S., Khodzher, T.V., Khuriganova, O.I., Chankina, O.V., and Chernov, D.G., Measurements of physicochemical characteristics of atmospheric aerosol at research station ice base Cape Baranov in 2018, Atmos. Oceanic Opt., 2019, vol. 32, no. 6, pp. 511–520.

    Article  CAS  Google Scholar 

  197. Sakerin, S.M., Zenkova, P.N., Kabanov, D.M., Kalashnikova, D.A., Lisitzin, A.P., Makarov, V.I., Polkin, V.V., Popova, S.A., Simonova, G.V., Chankina, O.V., and Shevchenko, V.P., Results of studying physicochemical characteristics of atmospheric aerosol in the 71st cruise of RV Akademik Mstislav Keldysh, Atmos. Oceanic Opt., 2020, vol. 33, no. 5, pp. 470–479.

    Article  ADS  CAS  Google Scholar 

  198. Sakerin, S.M., Kabanov, D.M., Makarov, V.I., Polkin, V.V., Popova, S.A., Chankina, O.V., Pochufarov, A.O., Radionov, V.F., and Rize, D.D., Spatial distribution of atmospheric aerosol physicochemical characteristics in Russian sector of the Arctic Ocean, Atmosphere, 2020a, vol. 11, no. 11, p. 1170.

    Article  ADS  CAS  Google Scholar 

  199. Sakerin, S.M., Kruglinsky, I.A., Kabanov, D.M., Kalashnikova, D.A., Kravchishina, M.D., Makarov, V.I., Novigatinsky, A.N., Popova, S.A., Pochufarov, A.O., Simonova, G.V., Turchinovich, Yu.S., and Darin, F.A., Spatiotemporal variations in atmospheric aerosol characteristics over the Kara, Barents, Norwegian, and Greenland seas (2018–2021 expeditions), Atmos. Oceanic Opt., 2022b, vol. 35, no. 6, pp. 651–660.

    Article  ADS  CAS  Google Scholar 

  200. Sakerin, S.M., Golobokova, L.P., Kabanov, D.M., Khuriganowa, O.I., Pol’kin, V.V., Radionov, V.F., Sidorova, O.R., and Turchinovich, Yu.S., Spatial distribution of aerosol characteristics over the South Atlantic and Southern Ocean, using multiyear (2004–2021) measurements in Russian Antarctic expeditions, Atmosphere, 2022a, vol. 13, no. 3, p. 427.

    Article  ADS  CAS  Google Scholar 

  201. Serdyukov, V.I., Sinitsa, L.N., Lugovskoi, A.A., and Emel’yanov, N.M., Liquid-nitrogen-cooled optical cell for the study of absorption spectra in a Fourier spectrometer, Atmos. Oceanic Opt., 2020, vol. 33, no. 4, pp. 393–399.

    Article  CAS  Google Scholar 

  202. Serdyukov, V.I., Sinitsa, L.N., and Emel’yanov, N.M., Study of the R-Branch of the 3ν3 band of 13CH4 in the 1-μm region, Atmos. Oceanic Opt., 2023, vol. 36, no. 1, pp. 105–112.

    Article  ADS  CAS  Google Scholar 

  203. Serov, E.A., Balashov, A.A., Tretyakov, M.Yu., Odintsova, T.A., Koshelev, M.A., Chistikov, D.N., Finenko, A.A., Lokshtanov, S.E., Petrov, S.V., and Vigasin, A.A., Continuum absorption of millimeter waves in nitrogen, J. Quant. Spectrosc. Radiat. Transfer, 2020, vol. 242, p. 106774.

    Article  CAS  Google Scholar 

  204. Sha, M.K., Langerock, B., Blavier, J.-F.L., Blumenstock, Th., Borsdorff, T., Buschmann, M., Dehn, A., De Maziere, M., Deutscher, N.M., Feist, D.G., Garcia, O.E., Griffith, D.W.T., Grutter, M., Hannigan, J.W., Hase, F., et al., Validation of methane and carbon monoxide from Sentinel-5 precursor using TCCON and NDACC-IRWG stations, Atmos. Meas. Tech., 2021, vol. 14, no. 9, pp. 6249–6304.

    Article  CAS  Google Scholar 

  205. Shatunova, M.V., Khlestova, Y.O., and Chubarova, N.E., Forecast of microphysical and optical characteristics of large-scale cloud cover and its radiative effect using the COSMO mesoscale weather prediction model, Atmos. Oceanic Opt., 2020, vol. 33, pp. 154–160.

    Article  CAS  Google Scholar 

  206. Shuvalova, J., Chubarova, N., and Shatunova, M., Impact of cloud condensation nuclei reduction on cloud characteristics and solar radiation during Covid-19 lockdown 2020 in Moscow, Atmosphere, 2022, vol. 13, no. 10, p.1710.

    Article  ADS  Google Scholar 

  207. Shvetsov, A.A., Belikovich, M.V., Krasil’nikov, A.A., K-ulikov, M.Yu., Kukin, L.M., Ryskin, V.G., Bol’shakov, O.S., Lesnov, I.V., Shchitov, A.M., Feigin, A.M., Khaikin, V.B., and Petrov, I.V., A 5-mm wavelength-range spectroradiometer for studying the atmosphere and underlying surface, Instrum. Exp. Tech., 2020, vol. 63, no. 6, pp. 885–889.

    Article  Google Scholar 

  208. Sibir, E.E., Radionov, V.F., and Rusina, E.N., Results of long-term observations of total ozone in Antarctica and over the Atlantic and Southern oceans, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 3, pp. 161–168.

    Article  Google Scholar 

  209. Sibir, E.E., Radionov, V.F., and Rusina, E.N., Database of hourly and daily sums of total radiation at Russian Antarctic stations: Analysis of changes in total radiation for the entire period of observations in Antarctica, Probl. Arkt. Antarkt., 2021, vol. 67, no. 3, pp. 249–260.

    Google Scholar 

  210. Silant’ev, N.A., Alekseeva, G.A., and Ananjevskaja, Y.K., Radiative transfer in atmospheres with a large chaotic magnetic field, Mon. Not. R. Astron. Soc., 2021, vol. 506, no. 4, pp. 4805–4818.

    Article  ADS  Google Scholar 

  211. Simonova, A.A., Mechanisms for the formation of the continuum absorption spectrum of water vapor in the IR absorption bands of water molecules, Cand. Sci. (Phys.–Math.) Dissertation, Inst. Atmos. Opt., Siberian Division, RAS, Tomsk, 2022.

  212. Simonova, A.A. and Ptashnik, I.V., Contribution of errors in line parameters to the retrieval of the vapor continuum absorption within 0.94- and 1.13-µm bands, Atmos. Oceanic Opt., 2019, vol. 32, no. 4, pp. 375–377.

    Article  CAS  Google Scholar 

  213. Simonova, A.A. and Ptashnik, I.V., Contribution of water dimers to the water vapor self-continuum absorption in fundamental bending and stretching bands, Atmos. Oceanic Opt., 2022a, vol. 35, no. 1, pp. 110–117.

    Article  ADS  CAS  Google Scholar 

  214. Simonova, A.A., Ptashnik, I.V., Elsey, J., McPheat, R.A., Shine, K.P., and Smith, K.M., Water vapour self-continuum in near-visible IR absorption bands: Measurements and semiempirical model of water dimer absorption, J. Quant. Spectrosc. Radiat. Transfer, 2022, vol. 277, p. 107957.

    Article  CAS  Google Scholar 

  215. Sinitsa, L.N., Serdyukov, V.I., and Lugovskoi, A.A., Low-temperature absorption spectrum of the (0120)-(0000) 13CH4 band. Line assignment, Opt. Atmos. Okeana, 2020, vol. 33, no. 9, pp. 668–676.

    Google Scholar 

  216. Sinitsa, L.N., Serdyukov, V.I., Polovtseva, E.R., Bykov, A.D., and Scherbakov, A.P., Led-based Fourier spectroscopy of HD17O in the range of 10000–11300 cm–1. Analysis of the 3v 3 band, J. Quant. Spectrosc. Radiat. Transfer, 2022, vol. 294, p. 108409.

    Article  Google Scholar 

  217. Skorokhod, A.I., Rakitin, V.S., and Kirillova, N.S., Impact of COVID-19 pandemic preventing measures and meteorological conditions on the atmospheric air composition in Moscow in 2020, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 3, pp. 183–190.

    Article  Google Scholar 

  218. Skorokhodov, A.V. and Kur’yanovich, K.V., Using CALIOP data to estimate the cloud base height on MODIS images, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2022a, vol. 19, no. 2, pp. 43–56.

    Article  Google Scholar 

  219. Skorokhodov, A.V. and Kur’yanovich, K.V., Using CloudSat CPR data to improve the efficiency of the neural network approach to estimating cloud base height in Aqua MODIS satellite images, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2022b, vol. 19, no. 5, pp. 63–75.

    Article  Google Scholar 

  220. Soldatenko, S.A. and Colman, R.A., Effects of climate system feedbacks and inertia on surface temperature power spectrum obtained from CMIP5 and low-order models, Izv., Atmos. Ocean. Phys., 2021, vol.57, no. 6, pp. 659–668.

    Article  Google Scholar 

  221. Solomatnikova, A.A., Romashkina, K.I., and Volokhina, D.Yu., Features of the ozone layer state over the regions of the Russian Federation, in Obzor sostoyaniya i zagryazneniya okruzhayushchei sredy v Rossiiskoi Federatsii za 2019 god (Review of the Environmental State and Pollution in the Russian Federation for 2019), Rosgidromet, 2020, pp. 36–39.

  222. Solomatnikova, A.A., Volokhina, D.Yu., and Zhukova, M.P., Features of the ozone layer state over the regions of the Russian Federation, Obzor sostoyaniya i zagryazneniya okruzhayushchei sredy v Rossiiskoi Federatsii za 2021 god (Review of the Environmental State and Pollution in the Russian Federation for 2021), Rosgidromet, 2022, pp. 36–39.

  223. Svetsov, V. and Shuvalov, V., Thermal radiation from impact plumes, Meteorit. Planet. Sci., 2019, vol. 54, no. 1, pp. 126–141.

    Article  ADS  CAS  Google Scholar 

  224. Tarasenkov, M.V., Zimovaya, A.V., Belov, V.V., et al., Retrieval of reflection coefficients of the Earth’s surface from MODIS satellite measurements considering radiation polarization, Atmos. Oceanic Opt., 2020, vol. 33, no. 2, pp. 179–187.

    Article  Google Scholar 

  225. Tarasenkov, M.V., Zonov, M.N., Engel’, M.V., and Belov, V.V., Estimation of the broken cloud effect on retrieving reflectance of cloudless earth surface regions from MODIS imagery, Russ. Meteorol. Hydrol., 2021a, vol. 46, no. 11, pp. 747–754.

    Article  Google Scholar 

  226. Tarasenkov, M.V., Zonov, M.N., Belov, V.V., and Engel’, M.V., Passive satellite sensing of the Earth’s surface through breaks in cloud fields, Atmos. Oceanic Opt., 2021b, vol. 34, no. 6, pp. 695–703.

    Article  ADS  Google Scholar 

  227. Tarasenkov, M.V., Engel, M.V., Zonov, M.N., et al., Assessing the cloud adjacency effect on retrieval of the ground surface reflectance from MODIS satellite data for the Baikal area, Atmosphere, 2022, vol. 13, no. 12, p. 2054.

    Article  ADS  Google Scholar 

  228. Tentyukov, M.P., Lyutoev, V.P., Belan, B.D., Simonenkov, D.V., and Golovataya, O.S., Ultraviolet radiation detector based on artificial periclase nanocrystals (MgO), Atmos. Oceanic Opt., 2022, vol. 35, no. 1, pp. 89–96.

    Article  ADS  CAS  Google Scholar 

  229. Timofeyev, Yu.M., Berezin, I.A., Virolainen, Ya.A., Makarova, M.V., Polyakov, A.V., Poberovskii, A.V., Filippov, N.N., and Foka, S., Spatial–temporal CO2 variations near St. Petersburg based on satellite and ground-based measurements, Izv. Atmos. Ocean. Phys., 2019b, vol. 55, no. 1, pp. 59–64.

    Article  Google Scholar 

  230. Timofeyev, Yu.M., Berezin, I.A., Virolainen, Ya.A., Makarova, M.V., and Nikitenko, A.A., Analysis of mesoscale variability of carbon dioxide in the vicinity of Moscow megacity based on satellite data, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2019a, vol. 16, no. 4, pp. 263–270.

    Article  Google Scholar 

  231. Timofeyev, Y.M., Uspensky, A.B., Zavelevich, F.S., Polyakov, A.V., Virolainen, Y.A., Rublev, A.N., Kukharsky, A.V., Kiseleva, J.V., Kozlov, D.A., Nikulin, A.G., Pyatkin, V.P., and Rusin, E.V., Hyperspectral infrared atmospheric sounder IKFS-2 on “Meteor-M” no. 2 - four years in orbit, J. Quant. Spectrosc. Radiat. Transfer, 2019, vol. 238, p. 106579.

    Article  CAS  Google Scholar 

  232. Timofeyev, Yu.M., Polyakov, A.V., Virolainen, Ya.A., Makarova, M.V., Ionov, D.V., Poberovskii, A.V., and Imhasin, H.H., Estimates of trends of climatically important atmospheric gases near St. Petersburg, Izv. Atmos. Ocean. Phys., 2020, vol. 56, no. 1, pp. 97–103.

    Google Scholar 

  233. Timofeyev, Yu.M., Polyakov, A.V., Virolainen, Ya.A., Döler, W., Oertel, D., and Spänkuch, D., First satellite measurements of carbon dioxide in the Earth’s atmosphere (from the SI-1 spectrometer aboard the Meteor satellite in 1979), Izv. Atmos. Ocean. Phys., 2020d, vol. 56, no. 4, pp. 401–404.

    Article  Google Scholar 

  234. Timofeyev, Yu.M., Nerobelov, G.M., Virolainen, Ya.A., Poberovskii, A.V., and Foka, S.C., Estimates of CO2 anthropogenic emission from the megacity St. Petersburg, Dokl. Earth Sci., 2020b, vol. 494, no. 1, pp. 753–756.

    Article  ADS  CAS  Google Scholar 

  235. Timofeyev, Yu.M., Berezin, I.A., Virolainen, Ya.A., Poberovskii, A.V., Makarova, M.V., and Polyakov, A.V., Estimates of anthropogenic CO2 emissions for Moscow and St. Petersburg based on OCO-2 satellite measurements, Atmos. Oceanic Opt., 2020a, vol. 33, no. 4, pp. 261–265.

    Google Scholar 

  236. Timofeyev, Yu.M., Virolainen, Ya.A., and Polyakov, A.V., Estimates of variations in CO2 radiative forcing in the last century and in the future, Atmos. Oceanic Opt., 2020c, vol. 33, no. 2, pp. 206–209.

    Article  Google Scholar 

  237. Timofeyev, Yu.M., Nerobelov, G.M., Polyakov, A.V., and Virolainen, Ya.A., Satellite monitoring of the ozonosphere, Russ. Meteorol. Hydrol., 2021a, vol. 46, no. 12, pp. 849–855.

    Article  Google Scholar 

  238. Timofeyev, Yu.M., Nerobelov, G.M., Poberovskii, A.V., and Filippov, N.N., Determining both tropospheric and stratospheric CO2 contents using a ground-based IR spectroscopic method, Izv. Atmos. Ocean. Phys., 2021, vol. 57, no. 3, pp. 286–296.

    Article  Google Scholar 

  239. Timofeyev, Yu.M., Filippov, N.N., and Poberovsky, A.V., Analysis of the information content and vertical resolution of ground-based IR spectroscopy for determining the vertical structure of CO2, Atmos. Oceanic Opt., 2020b, vol. 34, no. 1, pp. 87–92.

    Article  ADS  Google Scholar 

  240. Timofeyev, Yu.M., Nerobelov, G.M., and Poberovskii, A.V., Experimental estimates of integral anthropogenic CO2 emissions in the city of St. Petersburg, Izv. Atmos. Ocean. Phys., 2022, vol. 58, no. 3, pp. 237–245.

    Article  Google Scholar 

  241. Tretyakov, M.Yu., High Accuracy Resonator Spectroscopy of Atmospheric Gases at Millimetre and Submillimetre Waves, Cambridge Scholars Publishing, 2021. https://www.cambridgescholars.com/product/978-1-5275-7581-3.

  242. Troitsyna, L., Dudaryonok, A., Buldyreva, J.V., Filippov, N.N., and Lavrentieva, N., Temperature dependence of CH3I self-broadening coefficients in the v6 fundamental, J. Quant. Spectrosc. Radiat. Transfer, 2020, vol. 242, p. 106797.

    Article  CAS  Google Scholar 

  243. Troitsyna, L., Dudaryonok, A., Buldyreva, J.V., Filippov, N.N., and Lavrentieva, N.A., Room-temperature CH3I–N2 broadening coefficients for the v6 fundamental, J. Quant. Spectrosc. Radiat. Transfer, 2021a, vol. 266, p. 107566.

    Article  CAS  Google Scholar 

  244. Troitsyna, L., Dudaryonok, A., Filippov, N.N., Lavrentieva, N., and Buldyreva, J.V., Oxygen- and air-broadening coefficients for the CH3I v6 fundamental at room temperature, J. Quant. Spectrosc. Radiat. Transfer, 2021b, vol. 273, p. 107839.

    Article  CAS  Google Scholar 

  245. Tsyrul’nikov, M.D., Svirenko, P.I., Gaifulin, D.R., Gorbunov, M.E., and Uspenskii, A.B., Development of the system of operational data assimilation from meteorological observations at the Hydrometcenter of Russia, Gidrometeorol. Issled. Prognozy, 2019, no. 4, pp. 112–126.

  246. Tsyrul’nikov, M.D., Gaifulin, D.R., Svirenko, P.I., and Uspensky, A.B., Assimilation of observations from meteorological satellites in the Hydrometcenter of Russia, Russ. Meteorol. Hydrol., 2021, no. 12, pp. 80–93.

  247. Uspensky, A.B., 60 years of satellite meteorology, Meteorol. Gidrol., 2021, no. 12, pp. 5–10.

  248. Uspensky, A.B., Measuring the distribution of greenhouse gases in the atmosphere from satellites, Fundam. Prikl. Klimatol., 2022, vol. 8, no. 1, pp. 122–144.

    Google Scholar 

  249. Uspensky, A.B., Timofeyev, Yu.M., Kozlov, D.A., and Chernyi, I.V., Development of methods and instruments for remote temperature and humidity sensing of the Earth’s atmosphere, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 12, pp. 821–829.

    Article  Google Scholar 

  250. Uspenskii, A.B., Rublev, A.N., Kozlov, D.A., Golomolzin, V.V., Kiseleva, Yu.V., Kozlov, I.A., and Nikulin, A.G., Monitoring of the essential climate variables of the atmosphere from satellite-based infrared sounder IKFS-2, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 11, pp. 819–828.

    Article  Google Scholar 

  251. Ustinov, V.P., Baranova, E.L., Visheratin, K.N, Grachev, M.I., and Kal’sin, A.V., Carbon monoxide variations in the Antarctic atmosphere from ground-based and satellite measurement data, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 9, pp. 1210–1217.

    Article  Google Scholar 

  252. Ustinov, V.P., Baranova, E.L., Visheratin, K.N, Grachev, M.I., and Kal’sin, A.V., Methane variations in the atmosphere of Antarctic in 2009–2017 according to ground-based and satellite measurements, Probl. Arkt. Antarkt., 2020, vol.66, no. 1, pp. 66–81.

    Google Scholar 

  253. Uzhegov, V.N., Kozlov, V.S., Konovalov, I.B., Panchenko, M.V., Zenkova, P.N., Polkin, V.V., Romashchenko, V.A., Chernov, D.G., Shmargunov, V.P., and Yausheva, E.P., Relationships between aerosol absorption, scattering and extinction of radiation in combustion and pyrolysis smokes, in Proc. SPIE, 28th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 2022, vol. 12341, p. 123412W.

  254. Vasilchenko, S., Barbe, A., Starikova, E., Kassi, S., Mondelain, D., Campargue, A., and Tyuterev, V., Cavity-ring-down spectroscopy of the heavy ozone isotopologue 18O3: Analysis of a high energy band near 95% of the dissociation threshold, J. Quant. Spectrosc. Radiat. Transfer, 2022a, vol. 278, p. 108017.

    Article  CAS  Google Scholar 

  255. Vasilchenko, S., Mikhailenko, S.N., and Campargue, A., Cavity ring down spectroscopy of water vapour near 750 nm: A test of the HITRAN2020 and W2020 line lists, Mol. Phys., 2022b, vol. 120, nos. 15–16, p. 2051762.

    Article  ADS  Google Scholar 

  256. Vigouroux, C., Langerock, B., Aquino, C.A.B., Blumenstock, T., Cheng, Z., De Maziere, M., De Smedt, I., Grutter, M., Hannigan, J.W., Jones, N., Kivi, R., Loyola, D., Lutsch, E., Mahieu, E., Makarova, M., et al., Tropomi-Sentinel-5 precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations, Atmos. Meas. Tech., 2020, vol. 13, no. 1, pp. 3751–3767.

    Article  CAS  Google Scholar 

  257. Virolainen, Ya.A., Polyakov, A.V., and Kirner, O., Optimization of procedure for determining chlorine nitrate in the atmosphere from ground-based spectroscopic measurements, J. Appl. Spectrosc., 2020a, vol. 87, no. 2, pp. 319–325.

    Article  ADS  CAS  Google Scholar 

  258. Virolainen, Ya.A., Nikitenko, A.A., and Timofeyev, Yu.M., Intercalibration of satellite and ground-based measurements of CO2 content at the NDACC St. Petersburg station, J. Appl. Spectrosc., 2020, 2020, vol. 87, no. 5, pp. 888–892.

  259. Virolainen, Ya.A., Polyakov, A.V., and Timofeyev, Yu.M., Analysis of the variability of stratospheric gases near St. Petersburg using ground-based spectroscopic measurements, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 2, pp. 148–158.

    Article  Google Scholar 

  260. Virolainen, Ya.A., Timofeyev, Yu.M., Poberovsky, A.V. and Polyakov, A.V., Information content of the ground-based FTIR method for atmospheric HNO3 vertical structure retrieval, Atmos. Oceanic Opt., 2023, vol. 36, no. 2, pp. 24–29.

  261. Vlasenko, S.S., Volkova, K.A., Ionov, D.V., Ryshkevich, T.I., Ivanova, O.I., and Mikhailov, E.F., Variations of carbonaceous atmospheric aerosol near St. Petersburg, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 6, pp. 619–627.

    Article  Google Scholar 

  262. Volkova, E.V. and Kukharskii, A.V., Automated technology for detecting the parameters of cloud cover, precipitation and hazardous weather phenomena for the European territory of Russia using SEVIRI radiometer data from geostationary meteorological satellites of the Meteosat MSG series, Gidrometeorol. Issled. Prognozy, 2020b, no. 4, pp. 43–62.

  263. Volkova, E.V., Kostornaya, A.A., and Amikishieva, R.A., Retrieval of cloud cover parameters by automated satellite data processing systems, Geogr. Vestn., 2020a, no. 3, pp. 124–134.

  264. Volkova, K.A., Anikin, S.S., Mikhailov, E.F., Ionov, D.V., Vlasenko, S.S., and Ryshkevich, T.I., Seasonal and daily variability of aerosol particle concentrations near St. Petersburg, Atmos. Oceanic Opt., 2020, vol. 33, no. 5, pp. 524–530.

    Article  ADS  CAS  Google Scholar 

  265. Volkova, E.V., Andreev, A.I., and Kostornaya, A.A., Cloud cover and precipitation monitoring based on data from polar orbiting and geostationary satellites, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 12, pp. 830–838.

    Article  Google Scholar 

  266. Volpert, E.V. and Chubarova, N.E., Long-term changes in solar radiation in Northern Eurasia during the warm season according to measurements and reconstruction model, Russ. Meteorol. Hydrol., 2020, vol. 46, pp. 507–518.

    Article  Google Scholar 

  267. Wang, Y., Apituley, A., Bais, A., Beirle, S., Benavent, N., Borovski, A., Bruchkouski, I., Chan, K.L., Donner, S., Drosoglou, T., Finkenzeller, H., Friedrich, M.M., Frieß, U., Garcia-Nieto, D., Gómez-Martín L., et al., Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign, Atmos. Meas. Tech., 2020, vol. 13, no. 9, pp. 5087–5116.

    Article  CAS  Google Scholar 

  268. Zabolotskikh, E.V., External calibration of MTVZA-GYa microwave radiometer measurements in scanner channels. Part 1. The modeling, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 10, pp. 689–695.

    Article  Google Scholar 

  269. Zabolotskikh, E.V. and Balashova, E.A., External calibration of MTVZA-GYa microwave radiometer measurements in scanner channels. Part 2. The experiment, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 11, pp. 755–761.

    Article  Google Scholar 

  270. Zadvornykh, I.V., Gribanov, K.G., Zakharov, V.I., and Imasu, R., Methane vertical profile retrieval from the thermal and near-infrared atmospheric spectra, Atmos. Oceanic Opt., 2019, vol. 32, no. 2, pp. 152–157.

    Article  Google Scholar 

  271. Zadvornykh, I.V., Gribanov, K.G., Denisova, N.Yu., Zakharov, V.I., and Imasu, R., Method for retrieval of the HDO/H2O ratio vertical profile in the atmosphere from satellite spectra simultaneously measured in thermal and near-IR ranges, Atmos. Oceanic Opt., 2021, vol. 34, no. 2, pp. 81–86.

    Article  ADS  CAS  Google Scholar 

  272. Zadvornykh, I.V., Gribanov, K.G., Zakharov, V.I., and Imasu, R., Retrieval of HDO relative content in the atmosphere from simultaneous GOSAT-2 measurements in the thermal and near-IR, Atmos. Oceanic Opt., 2023, vol. 36, no. 1, pp. 127–131.

    Article  ADS  CAS  Google Scholar 

  273. Zakharova, S., Davydova, M., Borovski, A., Shukurov, K., Mukhartova, Yu., Makarenkov, A., and Postylyakov, O., Experiments on high-detailed mapping of tropospheric NO2 using GSA/Resurs-P observations: Results, validation with models and measurements, estimation of emission power, Proc. SPIE, 2021, vol. 11859, p. 1185905.

    Google Scholar 

  274. Zenkova, P.N., Terpugova, S.A., Pol’kin, Vas. V., Pol’kin, V.V., Uzhegov, V.N., Kozlov, V.S., Yausheva, E.P., and Panchenko, M.V., Development of an empirical model of optical characteristics of aerosol in Western Siberia, Atmos. Oceanic Opt., 2021, vol. 34, no. 3, pp. 320–326.

    Article  Google Scholar 

  275. Zenkova, P.N., Chernov, D.G., Shmargunov, V.P., Panchenko, M.V., and Belan, B.D., Submicron aerosol and absorbing substance in the troposphere of the Russian sector of the Arctic according to measurements onboard the Tu-134 Optik aircraft laboratory in 2020, Atmos. Oceanic Opt., 2022, vol. 35, no. 1, pp. 43–51.

    Article  ADS  CAS  Google Scholar 

  276. Zhdanova, E.Y., Chubarova, N.Y., and Lyapustin, A.I., Assessment of urban aerosol pollution over the Moscow megacity by the MAIAC aerosol product, Atmos. Meas. Tech., 2020, vol. 13, no. 2, pp. 877–891.

    Article  CAS  Google Scholar 

  277. Zhuravleva, T.B., Effect of shape and sizes of crystal particles on angular distributions of transmitted solar radiation in two sensing geometries: Results of numerical simulation, Atmos. Oceanic Opt., 2021a, vol. 34, no. 1, pp. 798–804.

    Article  Google Scholar 

  278. Zhuravleva, T.B., Simulation of brightness fields of solar radiation in the presence of optically anisotropic ice-crystal clouds: algorithm and test results, Atmos. Oceanic Opt., 2021b, vol. 34, no. 1, pp. 140–147.

    Article  ADS  Google Scholar 

  279. Zhuravleva, T.B. and Nasrtdinov, I.M., Effect of microstructure and horizontal inhomogeneity of broken cirrus clouds on mean solar radiative fluxes in the visible wavelength region: Results of numerical simulation, Atmos. Oceanic Opt., 2021, vol. 34, no. 10, pp. 678–688.

    Article  ADS  Google Scholar 

  280. Zhuravleva, T., Nasrtdinov, I., Chesnokova, T., and Ptashnik, I., Monte Carlo simulation of thermal radiative transfer in spatially inhomogeneous clouds taking into account the atmospheric sphericity, J. Quant. Spectrosc. Radiat. Transfer, 2019, vol. 236, pp. 296–305.

    Article  Google Scholar 

  281. Zhuravleva, T.B., Nasrtdinov, I.M., and Vinogradova, A.A., Direct radiative effects of smoke aerosol in the region of Tiksi station (Russian Arctic): Preliminary results, Atmos. Oceanic Opt., 2019a, vol. 32, no. 3, pp. 296–305.

    Article  CAS  Google Scholar 

  282. Zhuravleva, T.B., Artyushina, A.V., Vinogradova, A.A., and Voronina, Yu.V., Black carbon in the near-surface atmosphere far away from emission sources: Comparison of measurements and MERRA-2 reanalysis data, Atmos. Oceanic Opt., 2020, vol. 33, no. 6, pp. 591–601.

    Article  ADS  CAS  Google Scholar 

  283. Zhuravleva, T.B., Nasrtdinov, I.M., Artyushina, A.V., Timofeev, D.N., Shishko, V.A., Konoshonkin, A.V., and Kustova, N.V., Intensity of reflected solar radiation in the presence of optically anisotropic crystal clouds: Results of preliminary calculations, Proc. SPIE, 2021a, vol. 11916, p. 1191603.

    Google Scholar 

  284. Zhuravleva, T.B., Nasrtdinov, I.M., Konovalov, I.B., Golovushkin, N.A., and Beekmann, M., Impact of the atmospheric photochemical evolution of the organic component of biomass burning aerosol on its radiative forcing efficiency: A box model analysis, Atmosphere, 2021b, vol. 12, no. 12, p. 1555.

    Article  ADS  CAS  Google Scholar 

  285. Zhuravleva, T.B., Nasrtdinov, I.M., Konovalov, I.B., and Golovushkin, N.A., Radiative forcing of smoke aerosol taking into account the photochemical evolution of its organic component: Impact of illumination conditions and surface albedo, Atmos. Oceanic Opt., 2022, vol. 35, no. 1 suppl., pp. S113–S124.

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. A. Virolainen.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeyev, Y.M., Budak, V.P., Virolainen, Y.A. et al. Russian Investigations in the Field of Atmospheric Radiation in 2019–2022. Izv. Atmos. Ocean. Phys. 59 (Suppl 3), S383–S412 (2023). https://doi.org/10.1134/S0001433823150124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823150124

Keywords:

Navigation