Skip to main content
Log in

Research in Dynamic Meteorology in Russia in 2019–2022

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This review outlines the most significant results of research in dynamic meteorology performed by Russian scientists in 2019–2022. It is part of the Russian National Report on Meteorology and Atmospheric Sciences submitted to the International Association of Meteorology and Atmospheric Sciences (IAMAS). The review is supplemented by a list of main publications of Russian scientists on dynamic meteorology in 2019–2022.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Akperov, M.G., Mokhov, I.I., Dembitskaya, M.A., et al., Lapse rate peculiarities in the Arctic from reanalysis data and model simulations, Russ. Meteorol. Hydrol., 2019a, vol. 44, no. 2, pp. 97–102.

    Article  Google Scholar 

  2. Akperov, M.G., Semenov, V.A., Mokhov, I.I., Parfenova, M.R., Dembitskaya, M.A., Bokuchava, D.D., Rinke, A., and Dorn, V., Influence of oceanic heat influx into the Barents Sea on regional changes in ice cover and static stability of the atmosphere, Led Sneg, 2019b, vol. 59, no. 4, pp. 529–538.

    Google Scholar 

  3. Akperov, M., Rinke, A., Mokhov, I.I., et al., Future projections of cyclone activity in the arctic for the 21st century from regional climate models (Arctic-CORDEX), Global Planet. Change, 2019c, vol. 182, p. 103005.

    Article  Google Scholar 

  4. Akperov, M., Zhang, W., Miller, P.A., Mokhov, I.I., Semenov, V.A., Matthes, H., and Rinke, A., Responses of arctic cyclones to biogeophysical feedbacks under future warming scenarios in a regional Earth system model, Environ. Res. Lett., 2021, vol. 16, no. 6, p. 064076.

    Article  ADS  Google Scholar 

  5. Akperov, M.G., Eliseev, A.V., Mokhov, I.I., et al., Wind energy potential in the Arctic and subarctic regions and its projected change in the 21st century based on regional climate model simulations, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 6, pp. 428–436.

    Article  Google Scholar 

  6. Barskov, K., Stepanenko, V., Repina, I., Artamonov, A., and Gavrikov, A., Two regimes of turbulent fluxes above a frozen small lake surrounded by forest, Boundary Layer Meteorol., 2019, vol. 173, pp. 311–320.

    Article  ADS  Google Scholar 

  7. Barskov, K., Chechin, D., Drozd, I., Repina, I., et al., Relationships between second and third moments in the surface layer under different stratification over grassland and urban landscapes, Boundary Layer Meteorol., 2022, vol. 187, pp. 311–318.

    Article  ADS  Google Scholar 

  8. Bekryaev, R.V., Interrelationships of the North Atlantic multidecadal climate variability characteristics, Russ. J. Earth Sci., 2019a, vol. 19, no. 3, p. ES3004.

    Article  Google Scholar 

  9. Bekryaev, R.V., One mystery of the North Atlantic multidecadal variability. An attempt of simple explanation, IOP Conf. Ser.: Earth Environ. Sci., 2019b, vol. 231, no. 1, p. 012008.

  10. Bekryaev, R.V., Statistical aspects of quantitative estimation of polar amplification. Part 1: The ratio of trends, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 6, pp. 419–427.

    Article  Google Scholar 

  11. Chashechkin, Yu.D., Fast superfine components and sound packets in flows induced by a drop impact on a target fluid at rest, Fluid Dyn. Mater. Process., 2020, vol. 16, no. 4, pp. 773–800.

    Article  Google Scholar 

  12. Chashechkin, Y.D., Conventional partial and new complete solutions of the fundamental equations of fluid mechanics in the problem of periodic internal waves with accompanying ligaments generation, Mathematics, 2021, vol. 9, no. 6, p. 586.

    Article  Google Scholar 

  13. Chashechkin, Yu.D. and Ilynykh, A.Yu., Complete coalescence, partial bounce and rebound: Different regimes resulting from the interaction of a free falling drop with a target fluid, Fluid Dyn. Mater. Process., 2020, vol. 16, no. 4, pp. 801–811.

    Article  Google Scholar 

  14. Chashechkin, Y.D. and Zagumennyi, I.V., Formation of waves, vortices and ligaments in 2D stratified flows around obstacles, Phys. Scr., 2019, vol. 94, no. 5, pp. 1–17.

    Article  Google Scholar 

  15. Chashechkin, Yu.D. and Zagumennyi, I.V., 2D hydrodynamics of a plate: From creeping flow to transient vortex regimes, Fluids, 2021, vol. 6, no. 9, p. 310.

    Article  ADS  CAS  Google Scholar 

  16. Chechin, D.G., Makhotina, I.A., Lupkes, C., and Makshtas, A.P., Effect of wind speed and leads on clear-sky cooling over Arctic Sea ice during polar night, J. Atmos. Sci., 2019, vol. 76, pp. 2481–2503.

    Article  ADS  Google Scholar 

  17. Chernokulsky, A., Kurgansky, M., Mokhov, I., Shikhov, A., Azhigov, I., Selezneva, E., Zakharchenko, D., Antonescu, B., and Kuhne, T., Tornadoes in Northern Eurasia: From the Middle Age to the Information Era, Mon. Weather Rev., 2020a, vol. 148, no. 8, pp. 3081–3110.

    Article  ADS  Google Scholar 

  18. Chernokulsky, A., Shikhov, A., Bykov, A., and Azhigov, I., Satellite-based study and numerical forecasting of two tornado outbreaks in the Ural region in June 2017, Atmosphere, 2020b, vol. 11, no. 11, p. 1146.

    Article  ADS  Google Scholar 

  19. Chernokulsky, A.V., Kurgansky, M.V., Mokhov, I.I., Shikhov, A.N., Azhigov, I.O., Selezneva, E.V., Zakharchenko, D.I., Antonescu, B., and Kuhne, T., Tornadoes in the Russian regions, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 2, pp. 69–82.

    Article  Google Scholar 

  20. Chernokulsky, A.V., Shikhov, A.N., Azhigov, I.O., Eroshkina, N.A., Korenev, D.P., Bykov, A.V., Kalinin, N.A., Kurgansky, M.V., Pavlyukov, Yu.V., Sprygin, A.A., and Yarinich, Yu.I., Squalls and tornadoes over the European territory of Russia on May 15, 2021: Diagnosis and modeling, Russ. Meteorol. Hydrol., 2022a, vol. 47, no. 11, pp. 867–881.

    Article  Google Scholar 

  21. Chernokulsky, A., Shikhov, A., Bykov, A., Kalinin, N., Kurgansky, M., Sherstyukov, B., and Yarinich, Yu., Diagnosis and modelling of two destructive derecho events in European Russia in the summer of 2010, Atmos. Res., 2022b, vol. 267, p. 105928.

    Article  Google Scholar 

  22. Chkhetiani, O.G. and Vazaeva, N.V., On algebraic perturbations in the atmospheric boundary layer, Izv., Atmos. Ocean. Phys. 2019, vol. 55, no. 5, pp. 432–445.

    Article  Google Scholar 

  23. Chkhetiani, O.G. and Shalimov, S.L., On anomalous wind amplitudes in the lower ionosphere, J. Atmos. Sol.-Terr. Phys., 2022, vol. 240, p. 105960.

    Article  Google Scholar 

  24. Davydova, M.A., Chkhetiani, O.G., Levashova, N.T., and Nechaeva, A.L., On estimation of the contribution of secondary vortex structures to the transport of aerosols in the atmospheric boundary layer, Fluid Dyn., 2022, vol. 57, no. 8, pp. 998–1007.

    Article  ADS  MathSciNet  Google Scholar 

  25. Debolskiy, A.V., Stepanenko, V.M., Glazunov, A.V., and Zilitinkevich, S.S., Bulk models of sheared boundary layer convection, Izv., Atmos. Ocean. Phys. 2019, vol. 55, no. 2, pp. 139–151.

    Article  Google Scholar 

  26. Demchev, D.M., Kulakov, M.Yu., Makshtas, A.P., Makhotina, I.A., Fil’chuk, K.V., and Frolov, I.E., Verification of ERA-Interim and ERA5 reanalyses data on surface air temperature in the Arctic, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 11, pp. 771–777.

    Article  Google Scholar 

  27. Denisov, S.N., Eliseev, A.V., Mokhov, I.I., Model estimates for contribution of natural and anthropogenic CO2 and CH4 emissions into the atmosphere from the territory of Russia, China, Canada, and the USA to global climate change in the 21st century, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 10, pp. 735–747.

    Article  Google Scholar 

  28. Diansky, N.A., Stepanov, D.V., Fomin, V.V., and Chumakov, M.M., Water circulation off the northeastern coast of Sakhalin during the passage of three types of deep cyclones over the Sea of Okhotsk, Russ. Meteorol. Hydrol., vol. 45, 2020, no. 1, pp. 29–38.

  29. Drozd, I., Repina, I., Gavrikov, A., et al., Atmospheric turbulence structure above urban nonhomogeneous surface, Russ. J. Earth Sci., 2022, vol. 22, no. 5, p. ES01SI11.

  30. Durneva, E.A. and Chkhetiani, O.G., Planetary upper-level frontal zone in the Euro-Atlantic sector in summer in 1990–2019, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 6, pp. 365–371.

    Article  Google Scholar 

  31. Eliseev, A.V., Zhang, M., Gizatullin, R.D., Altukhova, A.V., Perevedentsev, Yu.P., Skorokhod, A.I., Impact of sulfur dioxide on the terrestrial carbon cycle, Izv., Atmos. Ocean. Phys. 2019, vol. 55, no. 1, pp. 38–49.

    Article  Google Scholar 

  32. Eliseev, A.V., Gizatullin, R.D., and Timazhev, A.V., Chap 1.0: A stationary tropospheric sulfur cycle for Earth system models of intermediate complexity, Geosci. Model Dev., 2021, vol. 14, no. 12, pp. 7725–7747.

    Article  ADS  CAS  Google Scholar 

  33. Eliseev, A.V., Timazhev, A.V., and Jimenez, L.P., Scale heights of water vapor and sulfur compounds in the lower troposphere, Atmos. Oceanic Opt., 2022, vol. 35, no. 7, pp. 782–792.

    Article  ADS  CAS  Google Scholar 

  34. Ermakov, D.M., Raev, M.D., Chernushich, A.P., and Sharkov, E.A., Algorithm for construction of global ocean–atmosphere radiothermal fields with high spatiotemporal sampling based on satellite microwave measurements, Izv., Atmos. Ocean. Phys., 2019a, vol. 55, no. 9, pp. 1041–1052.

    Article  Google Scholar 

  35. Ermakov, D.M., Sharkov, E.A., and Chernushich, A.P., Role of tropospheric latent heat advective fluxes in the intensification of tropical cyclones, Izv., Atmos. Ocean. Phys., 2019b, vol. 55, no. 9, pp. 1254–1265.

    Article  Google Scholar 

  36. Ermakov, D., Kuzmin, A., Pashinov, E., Sterlyadkin, V., Chernushich, A., and Sharkov, E., Comparison of vertically integrated fluxes of atmospheric water vapor according to satellite radiothermovision, radiosondes, and reanalysis, Remote Sens., 2021, vol. 13, p. 1639.

    Article  ADS  Google Scholar 

  37. Evgrafova, A. and Sukhanovskii, A., Angular momentum transfer in direct numerical simulations of a laboratory model of a tropical cyclone, Geophys. Astrophys. Fluid Dyn., 2022a, vol. 116, no. 3, pp. 185–205.

    Article  ADS  MathSciNet  Google Scholar 

  38. Evgrafova, A. and Sukhanovskii, A., Impact of complex relief on heat transfer in urban area, Urban Clim., 2022b, vol. 43, p. 101177.

    Article  Google Scholar 

  39. Glazunov, A.V., Mortikov, E.V., Barskov, K.V., Kadantsev, E.V., and Zilitinkevich, S.S., Layered structure of stably stratified turbulent shear flows, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 4, pp. 312–323.

    Article  Google Scholar 

  40. Glazunov, A.V., Debolskiy, A.V., and Mortikov, E.V., Turbulent length scale for multilayer RANS model of urban canopy and its evaluation based on large-eddy simulations, Supercomput. Front. Innov., 2022a, vol. 8, no. 4, pp. 100–116.

    Google Scholar 

  41. Glazunov, A., Mortikov, E., and Debolskiy, A., Studies of stable stratification effect on dynamic and thermal roughness lengths of urban-type canopy using large-eddy simulation, J. Atmos. Sci., 2022b, vol. 80, pp. 31–48.

    Article  ADS  Google Scholar 

  42. Gledzer, A.E., Gledzer, E.B., Khapaev, A.A., and Chkhetiani, O.G., Multiplicity of flow regimes in thin fluid layers in rotating annular channels, Fluid Dyn., 2021, vol. 56, no. 4, pp. 587–599.

    Article  CAS  Google Scholar 

  43. Golitsyn, G.S., Veroyatnostnye struktury makromira: zemletryaseniya, uragany, navodneniya (Probabilistic Structures of the Macrocosm: Earthquakes, Hurricanes, and Floods), Moscow: Fizmatlit. 2021.

  44. Golitsyn, G.S., Chkhetiani, O.G., and Vazaeva, N.V., Clouds and turbulence theory: Peculiar self-similarity, 4/3 fractal exponent and invariants, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 6, pp. 645–648.

    Article  Google Scholar 

  45. Goncharov, V.P., Dynamics of thin jets generated by temperature fronts, Phys. Rev. Fluids, 2021a, vol. 6, no. 10, p. 103801.

    Article  ADS  Google Scholar 

  46. Goncharov, V.P., Nonlinear pulsations of horizontal jets, Dyn. Atmos. Oceans, 2021b, vol. 95, p. 101237.

    Article  Google Scholar 

  47. Gorbunov, M.E., Koval’, O.A., and Mamontov, A.E., Method of spherical phase screens for modeling the propagation of diverging beams in inhomogeneous media, Izv., Atmos. Ocean. Phys. 2020, vol. 56, no. 1, pp. 52–60.

    Article  Google Scholar 

  48. Gorbunov, M.E., Kirchengast, G., and Lauritsen, K.B., Generalized canonical transform method, Atmos. Meas. Tech., 2021, vol. 14, no. 2, pp. 853–867.

    Article  Google Scholar 

  49. Gordov, E.P., Okladnikov, I.G., Genina, E.Yu., and Gordova, E.Yu., et al., Multidisciplinary ENVIROMIS conference: New experience, IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 611, no. 1, p. 012063.

  50. Harlander, U. and Kurgansky, M.V., Two-dimensional internal gravity wave beam instability. Linear theory and subcritical instability, Geophys. Astrophys. Fluid Dyn., 2021, vol. 115, nos. 5–6, pp. 612–647.

    Article  ADS  MathSciNet  Google Scholar 

  51. Ingel, L.Kh., On the dynamics of inertial particles in an intensive atmospheric vortex, Izv., Atmos. Ocean. Phys., 2021a, vol. 57, no. 6, pp. 551–558.

    Article  Google Scholar 

  52. Ingel, L.Kh., Ekman-type boundary layer over an anisotropic underlying surface, Fundam. Prikl. Gidrofiz., 2021b, vol. 14, no. 1, pp. 63–66.

    Google Scholar 

  53. Ingel, L.Kh., On the nonlinear dynamics of turbulent thermals in the shear flow, Russ. J. Nonlinear Dyn., 2019c, vol. 15, no. 1, pp. 35–39.

    MathSciNet  Google Scholar 

  54. Ingel, L.Kh., On the limiting laws of buoyant convective jets and thermals from local sources of a heat releasing impurity, J. Eng. Phys. Thermophys., 2019d, vol. 92, no. 6, pp. 1481–1488.

    Article  Google Scholar 

  55. Ingel, L.Kh., Vortex motion driven by differential diffusion, Izv., Atmos. Ocean. Phys. 2019e, vol. 55, no. 3, pp. 257–260.

    Article  Google Scholar 

  56. Ingel, L.Kh., On the nonlinear dynamics of massive particles in tornadoes, Tech. Phys., 2020, vol. 65, no. 6, pp. 860–864.

    Article  Google Scholar 

  57. Ingel, L.Kh., Initiation of vortex flows induced by double diffusion, J. Eng. Phys. Thermophys., 2021a, vol. 94, no. 3, pp. 648–653.

    Article  CAS  Google Scholar 

  58. Ingel, L.Kh., Slope flows produced by bulk heat release, J. Eng. Phys. Thermophys., 2021b, vol. 94, no. 1, pp. 160–164.

    Article  CAS  Google Scholar 

  59. Ingel, L.Kh., Some problems of nonlinear dynamics of turbulent thermals, Radiophys. Quantum Electron., 2021c, vol. 64, no. 3, pp. 205–213.

    Article  ADS  Google Scholar 

  60. Ingel, L.Kh., On the dynamics of the concentration of heavy particles in intensive vortex flows, Izv., Atmos. Ocean. Phys. 2022a, vol. 58, no. 4, pp. 340–345.

    Article  Google Scholar 

  61. Ingel, L.Kh., Stratified flows due to spatial inhomogeneities of exchange coefficients, Izv., Atmos. Ocean. Phys. 2022b, vol. 58, no. 1, pp. 22-26.

    Article  Google Scholar 

  62. Ingel, L.K., On the theory of slope flows over a thermally inhomogeneous surface, J. Appl. Mech. Tech. Phys., 2022c, vol. 63, no. 5, pp. 843–850.

    Article  ADS  MathSciNet  Google Scholar 

  63. Ingel, L.Kh. and Makosko, A.A., Estimation of the impact of gravity heterogeneities on the heat regime of the boundary layer of the atmosphere, Dokl. Earth Sci., 2021a, vol. 500, no. 1, pp. 777–780.

    Article  ADS  CAS  Google Scholar 

  64. Ingel, L.Kh. and Makosko, A.A., Geostrophic flow disturbances influenced by inhomogeneities of gravity field. 3D analytical model, Geophys. Astrophys. Fluid Dyn., 2021b, vol. 115, no. 1, pp. 35–43.

    Article  ADS  MathSciNet  Google Scholar 

  65. Issledovanie prirodnoi sredy vysokoshirotnoi Arktiki na NIS “Ledovaya baza mysa Baranova” (Study of the Natural Environment of the High-Latitude Arctic on the Ice Base of Cape Baranov Research Vessel), Makshtas, A.P. and Sokolov, V.T., Eds., St. Petersburg: AANII, 2021.

    Google Scholar 

  66. Ivanov, V., Varentsov, M., Matveeva, T., Repina, I., Artamonov, A., and Khavina, E., Arctic sea ice decline in the 2010s: The increasing role of the ocean–air heat exchange in the late summer, Atmosphere, 2019, vol. 10, no. 4, p. 184.

    Article  ADS  Google Scholar 

  67. Ivanova, A.R., International practices of thunderstorm nowcasting, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 11, pp. 756–763.

    Article  Google Scholar 

  68. Ivanova, A.R., Icing effects on air transport operation: State-of-the-art and prediction problems, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 7, pp. 461–473.

    Article  Google Scholar 

  69. Ivanova, A.R., Skriptunova, E.N., Komas’ko, N.I., Zav’yalova, A.A., Application of the COSMO-Ru system for aircraft icing prediction over the Russian Federation area, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 6, pp. 437–448.

    Article  Google Scholar 

  70. Kalashnik, M.V., Radiative instability of a barotropic jet flow in a rotating stratified atmosphere, Izv., Atmos. Ocean. Phys. 2019, vol. 55, no. 3, pp. 229–234.

    Article  Google Scholar 

  71. Kalashnik, M.V., Ekman friction and the formation of upper tropospheric zonal flows, Izv., Atmos. Ocean. Phys. 2020a, vol. 56, no. 5, pp. 448–457.

    Article  Google Scholar 

  72. Kalashnik, M.V., Long-wave instabilities in the SQG model with two boundaries, Geophys. Astrophys. Fluid Dyn., 2020b, vol. 115, no. 4, pp. 1–19.

    MathSciNet  Google Scholar 

  73. Kalashnik, M.V. and Chkhetiani, O.G., Nonstationary vortex streets in shear flows, Izv., Atmos. Ocean. Phys. 2019, vol. 55, no. 6, pp. 602–611.

    Article  Google Scholar 

  74. Kalashnik, M.V. and Chkhetiani, O.G., Optimal disturbances in the development of the instability of a free shear layer and a system of two counter-streaming jet flows, Fluid Dyn., 2020a, vol. 55, no. 2, pp. 171–184.

    Article  ADS  MathSciNet  Google Scholar 

  75. Kalashnik, M.V. and Chkhetiani, O.G., Baroclinic instability and nonlinear oscillations in the truncated SQG model, Q. J. R. Meteorol. Soc., 2020b, vol. 146, no. 732, pp. 3534–3547.

    Article  ADS  Google Scholar 

  76. Kalashnik, M.V. and Kulichkov, S.N., On pressure perturbations caused by a moving heat source of frontal type (hydrostatic mode), Izv., Atmos. Ocean. Phys. 2019, vol. 55, no. 5, pp. 423–431.

    Article  Google Scholar 

  77. Kalashnik, M.V. and Kurgansky, M.V., Hydrodynamic instability of vertical motions excited by spatially periodic distributions of heat sources, Fluid Dyn., 2020, vol. 55, no. 4, pp. 554–565.

    Article  ADS  MathSciNet  Google Scholar 

  78. Kalashnik, M.V., Kurgansky, M.V., and Kostrykin, S.V., Instability of surface quasigeostrophic spatially periodic flows, J. Atmos. Sci., 2020, vol. 77, no. 1, pp. 239–255.

    Article  ADS  Google Scholar 

  79. Kalashnik, M.V., Chkhetiani, O.G., and Kurgansky, M.V., Discrete SQG models with two boundaries and baroclinic instability of jet flows, Phys. Fluids, 2021, vol. 33, no. 7, p. 076608.

    Article  ADS  CAS  Google Scholar 

  80. Kalashnik, M.V., Kurgansky, M.V., and Chkhetiani, O.G., Baroclinic instability in geophysical fluid dynamics, Phys.-Usp., 2022, vol. 65, no. 10, pp. 1039–1070.

    Article  ADS  Google Scholar 

  81. Kalinin, N.A., Shikhov, A.N., Chernokulsky, A.V., Kostarev, S.V., and Bykov, A.V., Environments of formation of severe squalls and tornadoes causing large-scale windthrows in the forest zone of European Russia and the Ural, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 2, pp. 83–93.

    Article  Google Scholar 

  82. Kalmykova, O.V., Methodology for assessing tornado hazard near the Black Sea coast of Russia and its testing results, in Rezul’taty ispytaniya novykh i usovershenstvovannykh tekhnologii, modelei i metodov gidrometeorologicheskikh prognozov (Results of Testing New and Improved Technologies, Models, and Methods of Hydrometeorological Forecasts), Moscow: 2021, vol. 48, pp. 42–61.

  83. Kalmykova, O.V., Shershakov, V.M., Novitskii, M.A., and Shmerlin, B.Ya., Automated forecasting of waterspouts off the Black Sea coast of Russia and its performance assessment, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 11, pp. 764–771.

    Article  Google Scholar 

  84. Kalmykova, O.V., Fedorova, V.V., and Fadeev, R.O., Analysis of the conditions for the outbreak of tornadoes over the Black Sea on July 16, 2019 and assessment of successful forecasts, Gidrometeorol. Issled. Prognozy, 2021, no. 1, pp. 112–129.

  85. Kan, V., Gorbunov, M.E., Fedorova, O.V., and Sofieva, V.F., Latitudinal distribution of the parameters of internal gravity waves in the atmosphere derived from amplitude fluctuations of radio occultation signals, Izv., Atmos. Ocean. Phys. 2020a, vol. 56, no. 6, pp. 564–575.

    Article  Google Scholar 

  86. Kan, V., Gorbunov, M.E., Shmakov, A.V., and Sofieva, V.F., Reconstruction of the internal-wave parameters in the atmosphere from signal amplitude fluctuations in a radio-occultation experiment, Izv., Atmos. Ocean. Phys. 2020b, vol. 56, no. 5, pp. 435–447.

    Article  Google Scholar 

  87. Kolennikova, M.A., Vargin, P.N., and Gushchina, D.Yu., Interrelations between El Niño indices and major characteristics of polar stratosphere according to CMIP5 models and reanalysis, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 6, pp. 351–364.

    Article  Google Scholar 

  88. Kosyakov, S.I., Kulichkov, S.N., Chkhetiani, O.G., and Tsybul’skaya, N.D., On the effect of weak attenuation of acoustic waves from high-altitude explosions, Acoust. Phys., 2019, vol. 65, no. 6, pp. 731–741.

    Article  ADS  Google Scholar 

  89. Kurgansky, M.V., On the statistical distribution of pressure drops in convective vortices: Applications to Martian dust devils, Icarus, 2019, vol. 317, pp. 209–214.

    Article  ADS  Google Scholar 

  90. Kurgansky, M.V., On determination of the size-frequency distribution of convective vortices in pressure time-series surveys on Mars, Icarus, 2020a, vol. 335, p. 113389.

    Article  Google Scholar 

  91. Kurgansky, M.V., On the instability of finite-amplitude inertia-gravity waves, Fluid Dyn. Res., 2020b, vol. 52, p. 035503.

    Article  ADS  MathSciNet  Google Scholar 

  92. Kurgansky, M.V., Atmospheric circulation response to heat flux anomalies in a two-dimensional baroclinic model of the atmosphere, Izv., Atmos. Ocean. Phys., 2020c, vol. 56, no. 1, pp. 33–42.

    Article  Google Scholar 

  93. Kurgansky, M.V., Inertial instability of the Kolmogorov flow in a rotating stratified fluid, Fluid Dyn. Res., 2021a, vol. 53, p. 035502.

    Article  ADS  MathSciNet  Google Scholar 

  94. Kurgansky, M.V., An estimate of convective vortex activity at the insight landing site on mars, Icarus, 2021b, vol. 358, p. 114200.

    Article  Google Scholar 

  95. Kurgansky, M.V., A simple model of blocking action over a hemisphere, Theor. Appl. Climatol., 2021c, vol. 147, nos. 1–2, pp. 65–71.

    Article  ADS  Google Scholar 

  96. Kurgansky, M.V., Statistical distribution of atmospheric dust devils on earth and mars, Boundary Layer Meteorol., 2022a, vol. 184, no. 3, pp. 381–400.

    Article  ADS  Google Scholar 

  97. Kurgansky, M.V., Inertial instability of the time-periodic Kolmogorov flow in a rotating fluid with the full account of the Coriolis force, Fluid Dyn. Res., 2022b, vol. 54, no. 5.

  98. Kurgansky, M.V., On short-wave instability of the stratified Kolmogorov flow, Theor. Comput. Fluid Dyn., 2022c, vol. 36, no. 4, pp. 575–595.

    Article  MathSciNet  Google Scholar 

  99. Kurgansky, M.V., On the theory of symmetric instability of time-periodic flows with a complete account for the Coriolis force, Izv., Atmos. Ocean. Phys., 2022d, vol. 58, no. 4, pp. 329–339.

    Article  Google Scholar 

  100. Kurgansky, M.V. and Krupchatnikov, V.N., Dynamic meteorology research in Russia, 2015–2018, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 6, pp. 505–536.

    Article  Google Scholar 

  101. Kurgansky, M.V., Seelig, T., Klein, M., Will, A., and Harlander, U., Mean flow generation due to longitudinal librations of sidewalls of a rotating annulus, Geophys. Astrophys. Fluid Dyn., 2020, vol. 114, no. 6, pp. 742–762.

    Article  ADS  Google Scholar 

  102. Kurgansky, M.V., Maksimenkov, L.O., and Chkhetiani, O.G., Vertical helicity flux as an index of interannual atmospheric variability, IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 606, p. 012028.

  103. Kuznetsov, E.A. and Mikhailov, E.A., Slipping flows and their breaking, Ann. Phys., 2022, vol. 447, p. 169088.

    Article  MathSciNet  CAS  Google Scholar 

  104. Levina, G.V., Application of the theory of turbulent vortex dynamo for early diagnosis of tropical cyclone formation, Fundam. Prikl. Gidrofiz., 2022, vol. 15, no. 2, pp. 47–59.

    Google Scholar 

  105. Lipavskii, A.S., Eliseev, A.V., and Mokhov, I.I., Bayesian projections of the Amur and Selenga river runoff changes in the 21st century based on CMIP6 model ensemble simulations, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 5, pp. 370–384.

    Article  Google Scholar 

  106. Lukyanov, A.N., Vargin, P.N., and Yushkov, V.A., Lagrange studies of anomalously stable Arctic stratospheric vortex observed in winter 2019–2020, Izv., Atmos. Ocean. Phys. 2021a, vol. 57, no. 3, pp. 247–253.

    Article  Google Scholar 

  107. Lukyanov, A.N., Gan’shin, A.V., Yushkov, V.A., and Vyazankin, A.S., Trajectory modeling of the middle atmosphere, Russ. Meteorol. Hydrol., 2021b, vol. 46, no. 9, pp. 624–630.

    Article  Google Scholar 

  108. Lupo, A.R., Jensen, A.D., Mokhov, I.I., Timazhev, A., Eichler, T., and Efe, B., Changes in global blocking character during recent decades, Atmosphere, 2019, vol. 10, no. 2, p. 92.

    Article  ADS  Google Scholar 

  109. Makhotina, I. A., Chechin, D. G., and Makshtas, A.P., Cloud radiative forcing over sea ice in the Arctic during the polar night according to North Pole-37, -39, and -40 drifting stations, Izv., Atmos. Ocean. Phys. 2021, vol. 57, no. 5, pp. 451–460.

    Article  Google Scholar 

  110. Malinovskaya, E.A. and Chkhetiani, O.G., On conditions for the wind removal of soil particles, J. Appl. Mech. Tech. Phys., 2021, vol. 62, no. 7, pp. 1117–1131.

    Article  ADS  Google Scholar 

  111. Martynova, Yu.V., Vargin, P.N., and Volodin, E.M., Variation of Northern Hemispheric wintertime storm tracks under future climate change in INM-CM5 simulations, Izv., Atmos. Ocean. Phys. 2022, vol. 58, no. 3, pp. 208–218.

    Article  Google Scholar 

  112. Mokhov, I.I., Anomalous winters in regions of Northern Eurasia in different phases of the El Niño phenomena, Dokl. Earth Sci., 2020, vol. 493, no. 2, pp. 649–653.

    Article  ADS  CAS  Google Scholar 

  113. Mokhov, I.I., Extreme atmospheric and hydrological phenomena in Russian regions: Relationship with the Pacific Decadal Oscillation, Dokl. Earth Sci., 2021, vol. 500, no. 2, pp. 861–865.

    Article  ADS  CAS  Google Scholar 

  114. Mokhov, I.I., Winter atmospheric blocking events in the Northern Hemisphere under climate changes in recent decades (1980–2018), Dokl. Earth Sci., 2022, vol. 507, no. 1, pp. S334–S339.

    Article  ADS  CAS  Google Scholar 

  115. Mokhov I.I. and Poroshenko, A.G., Action as an integral characteristic of atmospheric (climatic) structures: Estimates for tropical cyclones, Izv., Atmos. Ocean. Phys. 2020, vol. 56, no. 6, pp. 539–544.

    Article  Google Scholar 

  116. Mokhov I.I. and Poroshenko, A.G., Statistical and model estimates of the relationship between the size and lifetime of polar lows, Moscow Univ. Phys. Bull., 2021a, vol. 76, no. 6, pp. 477–481.

    Article  ADS  Google Scholar 

  117. Mokhov, I.I. and Poroshenko, A.G., Statistical and model estimates of the relationship between the intensity and duration of tropical cyclones, Russ. Meteorol. Hydrol., 2021b, vol. 46, no. 5, pp. 302–306.

    Article  Google Scholar 

  118. Mokhov, I.I. and Semenov, V.A., Eds., Klimat Arktiki: protsessy i izmeneniya (The Arctic Climate: Processes and Changes), Moscow: Fizmatlit, 2022.

  119. Mokhov, I.I. and Timazhev, A.V., Atmospheric blocking and changes in its frequency in the 21st century simulated with the ensemble of climate models, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 6, pp. 369–377.

    Article  Google Scholar 

  120. Mokhov, I.I. and Timazhev, A.V., Frequency of summer atmospheric blockings in the Northern Hemisphere in different phases of El Niño and Pacific Decadal and Atlantic Multidecadal oscillations, Izv., Atmos. Ocean. Phys., 2022a, vol. 58, no. 3, pp. 199–207.

    Article  Google Scholar 

  121. Mokhov, I.I. and Timazhev, A.V., Integral index of atmospheric blocking activity in the Northern Hemisphere in recent decades, Izv., Atmos. Ocean. Phys., 2022b, vol. 58, no. 6, pp. 545–552.

    Article  Google Scholar 

  122. Mokhov, I.I. and Timazhev, A.V., Seasonal temperature extremes in the North Eurasian regions depending on ENSO phase transitions, Atmosphere, 2022c, vol. 13, no. 2, p. 249.

    Article  ADS  Google Scholar 

  123. Mokhov, I.I., Chernokulsky, A.V., and Osipov, A.M., Atmospheric centers of action in the Northern and Southern hemispheres: Features and variability, Russ. Meteorol. Hydrol., 2020a, vol. 45, no. 11, pp. 749–761.

    Article  Google Scholar 

  124. Mokhov, I.I., Makarova, M.E., and Poroshenko, A.G., Tropical cyclones and their transformation into extratropical: Estimates of the half-century trends, Dokl. Earth Sci., 2020b, vol. 493, no. 1, pp. 552–557.

    Article  ADS  CAS  Google Scholar 

  125. Mokhov, I.I., Yushkov, V.P., Timazhev, A.V., and Babanov, B.A., Squalls with a hurricane wind in Moscow, 2020c, vol. 75, no. 6, pp. 712–716.

  126. Mokhov, I.I., Chefranov, S.G., and Chefranov, A.G., Point vortices dynamics on a rotating sphere and modeling of global atmospheric vortices interactions, Phys. Fluids, 2020d, vol. 32, p. 106605.

    Article  ADS  CAS  Google Scholar 

  127. Mokhov, I.I., Osipov, A.M., and Chernokulsky, A.V., Atmospheric centers of action in the Northern Hemisphere: Current features and expected changes in the 21st century based on simulations with the CMIP5 and CMIP6 ensembles of climate models, Dokl. Earth Sci., 2022, vol. 507, no. 2, pp. 1132–1139.

    Article  ADS  CAS  Google Scholar 

  128. Mortikov, E.V., Glazunov, A.V., Debolskiy, A.V., Lykosov, V.N., and Zilitinkevich, S.S., Modeling of the dissipation rate of turbulent kinetic energy, Dokl. Earth Phys., 2019, vol. 489, no. 4, pp. 1440–1443.

    Article  ADS  CAS  Google Scholar 

  129. Nerushev, A.F. and Ivangorodsky, R.V., Determination of turbulence zones in the upper troposphere based on satellite measurements, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2019a, vol. 16, no. 1, pp. 205–215.

    Article  Google Scholar 

  130. Nerushev, A.F., Visheratin, K.N., and Ivangorodsky, R.V., Dynamics of high-altitude jet streams from satellite measurements and their relationship with climatic parameters and large-scale atmospheric phenomena, Izv., Atmos. Ocean. Phys., 2019b, vol. 55, no. 9, pp. 1198–1209.

    Article  Google Scholar 

  131. Nerushev, A.F., Visheratin, K.N., and Ivangorodsky, R.V., Turbulence in the upper troposphere according to long-term satellite measurements and its relationship with climatic parameters, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2020, vol. 17, no. 6, pp. 82–86.

    Article  Google Scholar 

  132. Nerushev, A.F., Visheratin, K.N., and Ivangorodsky, R.V., Statistical model of the time variability of the characteristics of high-altitude jet currents in the Northern Hemisphere based on satellite measurements, Izv., Atmos. Ocean. Phys., 2021a, vol. 57, no. 4, pp. 354–364.

    Article  Google Scholar 

  133. Nerushev, A.F., Visheratin, K.N., Kulizhnikova, L.K., and Ivangorodsky, R.V., The relationship of surface air temperature anomalies and the characteristics of high-altitude jet streams, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2021b, vol. 18, no. 1, pp. 199–209.

    Article  Google Scholar 

  134. Nikiforova, M.P., Vargin, P.N., and Zvyagintsev, A.M., Ozone anomalies over Russia in the winter-spring of 2015/2016, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 1, pp. 23–32.

    Article  Google Scholar 

  135. Parfenova, M.R., Eliseev, A.V., Mokhov, I.I., et al., Changes in the duration of the navigation period in Arctic seas along the Northern Sea Route in the twenty-first century: Bayesian estimates based on calculations with the ensemble of climate models, Dokl. Earth Sci., 2022, vol. 507, no. 1, pp. 952–958.

    Article  ADS  CAS  Google Scholar 

  136. Perezhogin, P.A., Glazunov, A.V., and Gritsun, A.S., Stochastic and deterministic kinetic energy backscatter parameterizations for simulation of the two-dimensional turbulence, Russ. J. Numer. Anal. Math. Modell., 2019, vol. 34, no. 4, pp. 197–213.

    Article  MathSciNet  Google Scholar 

  137. Polonsky, A.B., The Ocean’s Role in Climate Change, Newcastle, UK: Cambridge Scholars Publishing, 2019.

    Google Scholar 

  138. Repina, I.A. and Artamonov, A.Yu., Air–surface turbulent heat exchange in the Antarctic coastal zone derived from instrumental observations, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 2, pp. 81–86.

    Article  Google Scholar 

  139. Rivin, G.S., Rozinkina, I.A., Vil’fand, R.M., Kiktev, D.B., Tudrii, K.O., Blinov, D.V., Varentsov, M.I., Zakharchenko, D.I., Samsonov, T.E., Repina, I.A., and Artamonov, A.Yu., Development of the high-resolution operational system for numerical prediction of weather and severe weather events for the Moscow Region, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 7, pp. 455–465.

    Article  Google Scholar 

  140. Romanovskii, O.A. and Kharchenko, O.V., Atmospheric and ocean optics: Atmospheric physics. III. Atmosphere, 2022, vol. 13, no. 11, p. 1912.

    Article  ADS  Google Scholar 

  141. Serykh, I.V. and Sonechkin, D.M., El Niño forecasting based on the global atmospheric oscillation, Int. J. Climatol., 2021, vol. 41, pp. 3781–3792.

    Article  Google Scholar 

  142. Shelekhov, A.P., Afanasiev, A.L., Shelekhova, E.A., et al., Profiling the turbulence from spectral measurements in the urban atmosphere using UAVs, Proc. SPIE: Remote Sensing Technologies and Applications in Urban Environments VI, 2021a, vol. 11864, p. 118640B.

  143. Shelekhov, A.P., Afanasiev, A.L., Shelekhova, E.A., Kobzev, A.A., Tel’minov, A.E., Molchunov, A.N., and Poplevina, O.N., Using small unmanned aerial vehicles for turbulence measurements in the atmosphere, Izv., Atmos. Ocean. Phys., 2021b, vol. 57, no. 5, pp. 533–545.

    Article  Google Scholar 

  144. Shelekhov, A.P., Afanasiev, A.L., Shelekhova, E.A., et al., Low-altitude sensing of urban atmospheric turbulence with UAV, Drones, 2022, vol. 6, no. 3, p. 61.

    Article  Google Scholar 

  145. Shestakova, A.A., Impact of land surface roughness on downslope windstorm modelling in the Arctic, Dyn. Atmos. Oceans, 2021, vol. 95, p. 101244.

    Article  Google Scholar 

  146. Shestakova, A.A. and Debolskiy, A.V., Impact of the Novaya Zemlya bora on the ocean–atmosphere heat exchange and ocean circulation: A case-study with the coupled model, Atmosphere, 2022, vol. 13, no. 7, p. 1108.

    Article  ADS  Google Scholar 

  147. Shestakova, A.A. and Repina, I.A., Mesoscale vortex over Lake Baikal: A case-study, Russ. J. Earth Sci., 2021, vol. 21, no. 5, p. 1.

    Article  Google Scholar 

  148. Shestakova, A.A. and Toropov, P.A., Orographic and lake effect on extreme precipitation on the Iranian coast of the Caspian Sea: A case study, Meteorol. Atmos. Phys., 2021, vol. 133, pp. 69–84.

    Article  ADS  Google Scholar 

  149. Shestakova, A.A., Myslenkov, S.A., and Kuznetsova, A., Influence of Novaya Zemlya bora on sea waves: Satellite measurements and numerical modeling, Atmosphere, 2020, vol. 11, no. 7, p. 726.

    Article  ADS  Google Scholar 

  150. Shestakova, A.A., Chechin, D.G., Lüpkes, C., Hartmann, J., and Maturilli, M., The foehn effect during easterly flow over Svalbard, Atmos. Chem. Phys., 2022, vol. 22, no. 2, pp. 1529–1548.

    Article  ADS  CAS  Google Scholar 

  151. Shikhov, A.N., Chernokulsky, A.V., Azhigov, I.O., and Semakina, A.V., A satellite-derived database for stand-replacing windthrow events in boreal forests of European Russia in 1986–2017, Earth Syst. Sci. Data, 2020, vol. 12, pp. 3489–3513.

    Article  ADS  Google Scholar 

  152. Shikhov, A., Chernokulsky, A., Kalinin, N., Bykov, A., and Pischalnikova, E., Climatology and formation environments of severe convective windstorms and tornadoes in the Perm region (Russia) in 1984–2020, Atmosphere, 2021, vol. 12, p. 1407.

    Article  ADS  Google Scholar 

  153. Shikhov, A.N., Chernokulsky, A.V., Sprygin, A.A., and Yarynich, Yu.I., Estimation of convective atmospheric instability during squalls, tornadoes, and large hail events from satellite observations and ERA5 reanalysis data, Atmos. Oceanic Opt., 2022a, vol. 35, no. 6, pp. 739–801.

    Article  Google Scholar 

  154. Shikhov, A.N., Chernokulsky, A.V., and Azhigov, I.O., Spatiotemporal distribution of windfalls in the forest zone of Western Siberia in 2001–2020, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2022b, vol. 19, no. 3, pp. 186–202.

    Article  Google Scholar 

  155. Shishov, E.A., Solenaya, O.A., Chkhetiani, O.G., Azizyan, G.V., and Koprov, V.M., Multipoint measurements of temperature and wind in the surface layer, Izv., Atmos. Ocean. Phys. 2021, vol. 57, no. 3, pp. 254–263.

    Article  Google Scholar 

  156. Slunyaev, A.V., Effects of coherent dynamics of stochastic deep-water waves, Phys. Rev. E, 2020, vol. 101, p. 062214.

    Article  ADS  MathSciNet  PubMed  CAS  Google Scholar 

  157. Slunyaev, A.V., Persistence of hydrodynamic envelope solitons: detection and rogue wave occurrence, Phys. Fluids, 2021, vol. 33, p. 036606.

    Article  ADS  CAS  Google Scholar 

  158. Slunyaev, A.V. and Stepanyants, Y.A., Modulation property of flexural-gravity waves on a water surface covered by a compressed ice sheet, Phys. Fluids, 2022, vol. 34, p. 077121.

    Article  ADS  CAS  Google Scholar 

  159. Slunyaev, A.V. and Kokorina, A.V., Numerical simulation of the sea surface rogue waves within the framework of the potential Euler equations, Izv., Atmos. Ocean. Phys. 2020, vol. 56, no. 2, pp. 179–190.

    Article  Google Scholar 

  160. Smyshlyaev, S.P., Vargin, P.N., and Motsakov, M.A., Numerical modeling of ozone loss in the exceptional Arctic stratosphere winter–spring of 2020, Atmosphere, 2021, vol. 12, p. 1470.

    Article  ADS  CAS  Google Scholar 

  161. Stepanov, D., Fomin, V., Gusev, A., and Diansky, N., Mesoscale dynamics and eddy heat transport in the Japan/East Sea from 1990 to 2010: A model-based analysis, J. Mar. Sci. Eng., 2022, vol. 10, no. 1, p. 33.

    Article  Google Scholar 

  162. Sterlyadkin, V.V., Ermakov, D.M., Kuz’min, A.V., and Pashinov, E.V., Flood prediction on major rivers from radiometric microwave measurements from space. Is it possible?, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2022, vol. 19, no. 5, pp. 40–52.

    Article  Google Scholar 

  163. Sukhanovskii, A. and Popova, E., The importance of horizontal rolls in the rapid intensification of tropical cyclones, Boundary Layer Meteorol., 2020, vol. 175, pp. 259–276.

    Article  ADS  Google Scholar 

  164. The Republic of Adygea Environment, Kostianoy, A.G., Bedanokov, M.K., and Lebedev, S.A., Eds., Springer, 2020.

    Google Scholar 

  165. Tkachenko, E.V., Debolskiy, A.V., Mortikov, E.V., and Glazunov, A.V., Large-eddy simulation and parameterization of decaying turbulence in the evening transition of the atmospheric boundary layer, Izv., Atmos. Ocean. Phys. 2022, vol. 58, no. 3, pp. 219–236.

    Article  Google Scholar 

  166. Tsvetkova, N.D., Vyzankin, A.S., Vargin, P.N., Lukyanov, A.N., and Yushkov, V.A., Investigation and forecast of sudden stratospheric warming events with chemistry climate model SOCOL, IOP Conf. Ser., Earth Environ. Sci., 2020, vol. 606, p. 012062.

  167. Tsvetkova, N.D., Vargin, P.N., Luk’yanov, A.N., Kiryushov, B.M., Yushkov, V.A., and Khattatov, V.U., Studying chemical ozone depletion and dynamic processes in the Arctic stratosphere in the winter 2019/2020, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 9, pp. 606–615.

    Article  Google Scholar 

  168. Turbulence, Atmosphere and Climate Dynamics, IOP Conf. Ser.: Earth Environ. Sci., IOP Publ., 2022, vol. 1040.

  169. Vargin, P.N. and Kiryushov, B.M., Major sudden stratospheric warming in the Arctic in February 2018 and its impacts on the troposphere, mesosphere, and ozone layer, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 2, pp. 112–123.

    Article  Google Scholar 

  170. Vargin, P., Martynova, Y., Volodin, E., and Kostrykin, S., Investigation of boreal storm tracks in historical simulations of INM CM5 and reanalysis data, IOP Conf. Ser., Earth Environ. Sci., 2019, vol. 386, p. 012007.

  171. Vargin, P.N., Kostrykin, S.V., Rakushina, E.V., Volodin, E.M., and Pogorel’tsev, A.I., Study of the variability of spring breakup dates and Arctic stratospheric polar vortex parameters from simulation and reanalysis data, Izv., Atmos. Ocean. Phys., 2020a, vol. 56, no. 5, pp. 458–469.

    Article  Google Scholar 

  172. Vargin, P.N., Nikiforova, M.P., and Zvyagintsev, A.M., Variability of the Antarctic ozone anomaly in 2011–2018, Russ. Meteorol. Hydrol., 2020b, vol. 45, no. 2, pp. 63–73.

    Article  Google Scholar 

  173. Vargin, P.N., Luk’yanov, A.N., and Kiryushov, B.M., Dynamic processes in the arctic stratosphere in the winter of 2018/2019, Russ. Meteorol. Hydrol., 2020c, vol. 45, no. 6, pp. 387–397.

    Article  Google Scholar 

  174. Vargin, P.N., Gur’yanov, V.V., Luk’yanov, A.N., and Vyazankin, A.S., Dynamic processes of the arctic stratosphere in the 2020–2021 winter, Izv., Atmos. Ocean. Phys., 2021a, vol. 57, no. 6, pp. 568–580.

    Article  Google Scholar 

  175. Vargin, P.N., Kolennikova, M.A., Kostrykin, S.V., and Volodin, E.M., Impact of sea surface temperature anomalies in the Equatorial and North Pacific on the Arctic stratosphere according to the INMCM5 climate model simulations, Russ. Meteorol. Hydrol., 2021b, vol. 46, no. 1, pp. 1–9.

    Article  Google Scholar 

  176. Vargin, P.N., Koval, A.V., and Guryanov, V.V., Arctic stratosphere dynamical processes in the winter 2021–2022, Atmosphere, 2022a, vol. 13, p. 1550.

    Article  ADS  Google Scholar 

  177. Vargin, P.N., Kostrykin, S.V., Volodin, E.M., Pogoreltsev, A.I., and Wei, K., Arctic stratosphere circulation changes in the 21st century in simulations of INM CM5, Atmosphere, 2022b, vol. 13, p. 25.

    Article  ADS  CAS  Google Scholar 

  178. Vazaeva, N.V., Chkhetiani, O.G., and Maksimenkov, L.O., Organized roll circulation and transport of mineral aerosols in the atmospheric boundary layer, Izv., Atmos. Ocean. Phys. 2019, vol. 55, no. 2, pp. 152–166.

    Article  Google Scholar 

  179. Vazaeva, N.V., Chkhetiani, O.G., and Kurgansky, M.V., On integral characteristics of polar lows, IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 606, p. 012065.

  180. Vazaeva, N.V., Chkhetiani, O.G., Kurgansky, M.V., and Kallistratova, M.A., Helicity and turbulence in the atmospheric boundary layer, Izv., Atmos. Ocean. Phys. 2021, vol. 57, no. 1, pp. 29–46.

    Article  Google Scholar 

  181. Vazaeva, N.V., Repina, I.A., Shestakova, A.A., and Ganbat, G., Mesoscale vortex over Uvs-Nuur: Analysis and numerical simulation, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2022a, vol. 19, no. 4, pp. 306–317.

    Article  Google Scholar 

  182. Vazaeva, N.V., Chkhetiani, O.G., and Durneva, E.A., Criteria to identify polar lows, Russ. Meteorol. Hydrol., 2022b, vol. 47, no. 4, pp. 262–271.

    Article  Google Scholar 

  183. Volodin, E., The mechanisms of cloudiness evolution responsible for equilibrium climate sensitivity in climate model INM-CM4-8, Geophys. Res. Lett., 2021, vol. 48, p. e2021GL096204.

  184. Volodin, E.M. and Gritsun, A.S., Simulation of possible future climate changes in the 21st century in the INM-CM5 climate model, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 3, pp. 218–228.

    Article  Google Scholar 

  185. Vorobyeva, V. and Volodin, E., Evaluation of the INM RAS climate model skill in climate indices and stratospheric anomalies on seasonal timescale, Tellus A, 2021, vol. 73, p. 1892435.

  186. Vulfson, A. and Nikolaev, P., Local similarity theory of convective turbulent layer using “spectral” Prandtl mixing length and second moment of vertical velocity, J. Atmos. Sci., vol. 79, pp. 101–118.

  187. Vyazankin, A.S., Tsvetkova, N.D., Vargin, P.N., and Yushkov, V.A., Atmospheric modeling for controlling the motion of a return vehicle, Sol. Syst. Res., 2020, vol. 54, no. 7, pp. 679–684.

    Article  ADS  CAS  Google Scholar 

  188. Wei, K., Chen, W., and Vargin, P., Longitudinal peculiarities of planetary waves-zonal flow interaction and its role in stratosphere–troposphere dynamical coupling, Clim. Dyn., 2021, vol. 57, pp. 2843–2862.

    Article  Google Scholar 

  189. Zagumennyi, Y.V. and Chashechkin, Y.D., Numerical analysis of flows of stratified and homogeneous fluids near horizontal and inclined plates, Fluid Dyn., 2019, vol. 54, pp. 958–969.

    Article  ADS  MathSciNet  Google Scholar 

  190. Zasko, G.V., Glazunov, A.V., Mortikov, E.V., Nechepurenko, Y.M., and Perezhogin, P.A., Optimal energy growth in stably stratified turbulent Couette flow, Boundary-Layer Meteorol., 2023, vol. 63, pp. 65–96.

    Google Scholar 

  191. Zilitinkevich, S., Kadantsev, E., Repina, I., Mortikov, E., and Glazunov, A., Order out of chaos: Shifting paradigm of convective turbulence, J. Atmos. Sci., 2021, vol. 78, pp. 3925–3932.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Repina.

Ethics declarations

The author of this work declares that she has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Repina, I.A. Research in Dynamic Meteorology in Russia in 2019–2022. Izv. Atmos. Ocean. Phys. 59 (Suppl 3), S266–S293 (2023). https://doi.org/10.1134/S0001433823150112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823150112

Keywords:

Navigation