Skip to main content
Log in

Russian Studies on Atmospheric Electricity in 2019–2022

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This review contains the most significant results of Russian studies in the field of atmospheric electricity in 2019–2022. It is part of the Russian National Report on Meteorology and Atmospheric Sciences to the International Association of Meteorology and Atmospheric Sciences (IAMAS). The report was presented and approved at the XXVIII General Assembly of the International Union of Geodesy and Geophysics ((IUGG). The review is followed by a list of the main published works on the studies of atmospheric electricity of Russian scientists in 2019–2022.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Abshaev, M.T., Abshaev, A.M., Mikhailovskii, Yu.P., et al., Features of the development of electrification and city formation processes in a supercell cloud using remote radio physical means, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 2020, no. 596, pp. 96–130.

  2. Abshaev, M.T., Abshaev, A.M., Sinkevich, A.A., et al., Features of development of a supercell convective cloud at the stage of maximum lightning activity (August 19, 2015, the North Caucasus), Russ. Meteorol. Hydrol., 2022, vol. 47, no. 4, pp. 315–325.

    Article  Google Scholar 

  3. Adzhiev, A.Kh., Kupovykh, G.V., Kerefova, Z.M., et al., Solar wind effect on the electric field dynamics in the atmospheric surface layer, Izv. Yuzhn. Fed. Univ.: Tekh. Nauki, 2019, no. 5, pp. 114–122.

  4. Adzhiev, A.Kh., Kerefova, Z.M., Klovo, A.G., et al., Analysis of long-term atmospheric-electrical observation data on the territory of the North Caucasus region, Tr. Voen.-Kosm. Akad. im. A.F. Mozhaiskogo, 2020, no. S674, pp. 75–79.

  5. Adzhiev, A.Kh., Kerefova, Z.M., and Kuz’min, V.A., Determination of the current values of ground lightning discharges in the North Caucasus using an LS8000 lightning recorder, Gidrometeorol. Ekol., 2021, no. 64, pp. 531–543.

  6. Adzhiev, A.Kh., Klovo, A.G., Kudrinskaya, T.V., et al., Diurnal variations of the electric field in the atmospheric boundary layer, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 4, pp. 397–405.

    Article  Google Scholar 

  7. Anisimov, S.V., Galichenko, S.V., Aphinogenov, K.V., et al., Mid-latitude atmospheric boundary layer electricity: A study by using a tethered balloon platform, Atmos. Res., 2021a, vol. 250, p. 105355.

    Article  CAS  Google Scholar 

  8. Anisimov, S.V., Galichenko, S.V., Prokhorchuk, A.A., et al., Statistics of variations in atmospheric electrical parameters based on a three-dimensional model and field observations, Atmos. Res., 2021b, vol. 259, p. 105660.

    Article  Google Scholar 

  9. Anisimov, S.V., Galichenko, S.V., Aphinogenov, K.V., et al., Small air ion statistics near the Earth’s surface, Atmos. Res., 2022, vol. 267, p. 105913.

    Article  CAS  Google Scholar 

  10. Anisimov, S.V., Galichenko, S.V., Prokhorchuk, A.A., et al., Measurements of the atmospheric electric current density by a passive horizontal ring antenna in the surface layer: Electrostatic approximation, Radiophys. Quantum Electron., 2023a, vol. 65, no. 11, pp. 893–913.

    Google Scholar 

  11. Anisimov, S.V., Galichenko, S.V., Prokhorchuk, A.A., et al., Measurements of the atmospheric electric current density by a passive horizontal ring antenna in the surface layer: Quasi-stationary approximation, Radiophys. Quantum Electron., 2023b, vol. 65, no. 10, pp. 809–827.

    Article  ADS  Google Scholar 

  12. Babich, L.P., Thunderstorm neutrons, Phys.-Usp., 2019, vol. 62, no. 10, pp. 976–999.

    Article  ADS  CAS  Google Scholar 

  13. Babich, L.P., Electrotechnique interpretation of the electric field amplification in front of the plasma channel, IEEE Trans. Plasma Sci., 2020, vol. 48, no. 12, pp. 4089–4092.

    Article  ADS  Google Scholar 

  14. Babich, L.P. and Bochkov, E.I., The role of charged ice hydrometeors in lightning initiation, Tr. RFYaTs-VNIIEF, 2019, no. 24-1, pp. 198–207.

  15. Bazelyan, E.M., Mechanism of orientation and parameters of lightning in context of lightning protection, Plasma Phys. Rep. 2019, vol. 45, no. 3, pp. 252–263.

    Article  ADS  Google Scholar 

  16. Bazelyan, E.M., The problem of control actions on the lightning discharge, Plasma Phys. Rep. 2021, vol. 47, no. 3, pp. 267-276.

    Article  Google Scholar 

  17. Bazelyan, E.M. and Aleksandrov, N.L., Electric field in a positive streamer in long air gaps, Plasma Phys. Rep., 2022, vol. 48, no. 7, pp. 789–797.

    Article  ADS  Google Scholar 

  18. Bazelyan, E.M. and Popov, N.A., Stepwise development of a positive long spark in the air, Plasma Phys. Rep., 2020, vol. 46, no. 3, pp. 293–305.

    Article  ADS  Google Scholar 

  19. Bocharov, A.N., Mareev, E.A., and Popov, N.A., Numerical simulation of high-current pulsed arc discharge in air, J. Phys. D: Appl. Phys., 2022, vol. 55, no. 11, p. 115204.

    Article  ADS  CAS  Google Scholar 

  20. Bogatov, N.A., Kostinskiy, A.Yu., Syssoev, V.S., et al., Experimental investigation of the streamer zone of long-spark positive leader using high-speed photography and microwave probing, J. Geophys. Res.: Atmos., 2020, vol. 125, no. 11, p. e2019JD031826.

  21. Bogatov, N.A., Sysoev, V.S., Sukharevskii, D.I., et al., Microwave diagnostics of electrical discharges in an artificial cloud of charged water drops, Tech. Phys., 2022, no. 3, pp. 294–299.

  22. Bulatov, A.A., Iudin, D.I., and Sysoev, A.A., Self-organizing transport model of a spark discharge in a thunderstorm cloud, Radiophys. Quantum Electron., 2020, vol. 63, no. 2, pp.124–141.

    Article  ADS  Google Scholar 

  23. Dementyeva, S.O., Ilin, N.V., Shatalina, M.V., et al., Forecast of convective events and its verification against atmospheric electricity observations, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 2, pp. 123–129.

    Article  Google Scholar 

  24. Denisenko, V.V. and Lyakhov, A.N., Comparison of ground-based and satellite data on spatiotemporal distribution of lightning discharges under solar minimum, Sol.-Terr. Phys., 2021, vol. 7, no. 4, pp. 33–66.

    Google Scholar 

  25. Eliseev, A.V., Ploskov, A.N., Chernokulsky, A.V., and Mokhov, I.I., A correlation between lightning flash frequencies and the statistical characteristics of convective activity in the atmosphere, Dokl. Earth Sci., 2019, vol. 485, no. 1, pp. 273–278.

    Article  ADS  CAS  Google Scholar 

  26. Evtushenko, A.A., Gushchin, M.E., Korobkov, S.V., et al., Simulation of high-altitude discharges in a large plasma facility, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 3, pp. 345–354.

  27. Evtushenko, A., Ilin, N., and Svechnikova, E., Parameterization and global distribution of sprites based on the WWLLN data, Atmos. Res., 2022, vol. 276, p. 106272.

    Article  Google Scholar 

  28. Gotyur, I.A., Korovin, E.A., Chernyshev, S.V., et al., Experimental network of lightning activity monitoring sensors, Tr. Voen.-Kosm. Akad. im. A.F. Mozhaiskogo, 2022, no. S685, pp. 66–74.

  29. Harrison, R., Giles, Nicoll., and Keri, A., Mareev evgeny et al. extensive layer clouds in the global electric circuit: their effects on vertical charge distribution and storage, Proc. R. Soc.: A: Math., Phys. Eng. Sci., 2020, vol. 476, no. 2238, p. 20190758.

  30. Ilin, N.V. and Kuterin, F.A., Accuracy of thunderstorm detection based on DMRL-C weather radar data, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 9, pp. 669–675.

    Article  Google Scholar 

  31. Ilin, N.V., Slyunyaev, N.N., and Shatalina, M.V., Modeling the seasonal dynamics of the diurnal variation of the global electric circuit, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 5, pp. 446–452.

    Article  Google Scholar 

  32. Ilin, N.V., Slyunyaev, N.N., and Mareev, E.A., Toward a realistic representation of global electric circuit generators in models of atmospheric dynamics, J. Geophys. Res.: Atmos., 2020, vol. 125, no. 6, p. e2019JD032130.

  33. Iudin, D.I., Iudin, F.D., Syssoev, A.A., et al., Noise-induced kinetic transition in two-component environment, J. Comput. Appl. Math., 2021, vol. 388, p. 113268.

    Article  Google Scholar 

  34. Karashtin, A.N., Shlyugaev, Y.V., and Karashtina, O.S., Cloud-to-ground lightning discharge indicator in the radio frequency emission of thunderclouds as observed in the Upper Volga region of Russia, Atmos. Res., 2021, vol. 256, p. 105559.

    Article  Google Scholar 

  35. Kharyutkina, E., Pustovalov, K., Moraru, E., et al., Analysis of spatiotemporal variability of lightning activity and wildfires in Western Siberia during 2016–2021, Atmosphere, 2022, vol. 13, no. 5, p. 669.

    Article  ADS  Google Scholar 

  36. Klimenko, V.V., Lubyako, L.V., Mareev, E.A., et al., Ground-based measurements of microwave brightness temperature and electric field fluctuations for clouds with a different level of electrical activity, Atmos. Res., 2022, vol. 266, p. 105937.

    Article  Google Scholar 

  37. Kononov, I.I., Korovin, E.A., Shchukin, G.G., et al., Current state and prospects of development of passive radio engineering monitoring of storm activity, IOP Conf. Ser. Mater. Sci. Eng., 2019, vol. 698, no. 4, p. 044046.

  38. Kostinskiy, A.Yu., Bogatov, N.A., Syssoev, V.S., et al., Unusual plasma formations produced by positive streamers entering the cloud of negatively charged water droplets, J. Geophys. Res.: Atmos., 2022, vol. 127, no. 21, p. e2021JD035821.

  39. Kuterin, F.A. and Slyunyaev, N.N., Implementation of ionospheric generators in the numerical model of the global electric circuit, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 6, pp. 768–780.

  40. Kutsyk, I.M. and Babich, L.P., Heating of a local region of a branching streamer as a starting point of a space leader and a negative-leader step, Plasma Phys. Rep., 2021, vol. 47, no. 3, pp. 251–256.

    Article  ADS  Google Scholar 

  41. Lesev, V.N., Shapovalov, V.A., Ashabokov, B.A., et al., 3D model of a convective cloud: The interaction of microphysical and electrical processes, J. Heat Mass Transfer, 2021, vol. 23, no. 1, pp. 1–18.

    Article  Google Scholar 

  42. Mikhailov, Yu.M., Smirnov, S.E., Mikhailova, G.A., et al., Tropical cyclones and possible winter thunderstorms on Kamchatka, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 5, pp. 619–635.

  43. Mikhailovskii, Yu.P., Popov, V.B., Sin’kevich, A.A., et al., Dynamics of the electrical structure of cumulonimbus clouds, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 2019, no. 595, pp. 83–105.

  44. Mikhailovskii, Yu.P., Toropova, M.L., Veremey, N.E., et al., Dynamics of the electrical structure of cumulonimbus clouds, Radiophys. Quantum Electron., 2021, vol. 64, no. 5, pp. 309–320.

    Article  ADS  Google Scholar 

  45. Morozov, V.N., The influence of electric field generators operating in atmospheric upper layers on the ground layer electricity, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 2022, no. 605, pp. 58–91.

  46. Morozov, V.N., Interaction of cloud charge structures with the surrounding conducting atmosphere with inhomogeneous electrical conductivity, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 2019, no. 592, pp. 23–79.

  47. Nagorskii, P.M., Pustovalov, K.N., and Smirnov, S.V., Daily and seasonal variations of the undisturbed electric field and their relationship with the variability of geophysical quantities in the south of Western Siberia, Tr. Voen.-Kosm. Akad. im. A.F. Mozhaiskogo, 2022, no. 685, pp. 213–222.

  48. Nechepurenko, O.E., Gorbatenko, V.P., Pustovalov, K.N., Gromova, A.V., Thunderstorm activity over Western Siberia, Geosfer. Issled., 2022, no. 4, pp. 123–134.

  49. Pustovalov, K., Nagorskiy, P., Oglezneva, M., and Smirnov, S., The electric field of the undisturbed atmosphere in the south of Western Siberia: A case study on Tomsk, Atmosphere, 2022, vol. 13, p. 614.

    Article  ADS  Google Scholar 

  50. Shatalina, M.V., Mareev, E.A., Klimenko, V.V., et al., Experimental study of diurnal and seasonal variations in the atmospheric electric field, Radiophys. Quantum Electron., 2019, vol. 62, no. 3, pp. 183–191.

    Article  ADS  Google Scholar 

  51. Shatalina, M.V., Il’in, N.V., and Mareev, E.A., Characteristics of hydrometeorological hazards in Nizhny Novgorod according to in-situ observations of electric field, Meteorol. Gidrol., 2021, no. 6, pp. 107–111.

  52. Shepetov, A., Antonova, V., Kalikulov, O., et al., The prolonged gamma ray enhancement and the short radiation burst events observed in thunderstorms at Tien Shan, Atmos. Res., 2021, vol. 248, p. 105266.

    Article  CAS  Google Scholar 

  53. Shuleikin, V.N. and Shchukin, G.G., Surface atmospheric electricity elements used in problems of applied geophysics, Tr. Voen.-Kosm. Akad. im. A.F. Mozhaiskogo, 2022, no. 685, pp. 236–244.

  54. Sin’kevich, A.A., Mikhailovskii, Yu.P., Toropova, M.L., et al., Thunderstorm with waterspout structure and the dependence lightning frequency on its characteristics, Atmos. Oceanic Opt., 2020, vol. 33, no. 6, pp. 645–649.

    Article  ADS  Google Scholar 

  55. Sin’kevich, A., Boe, B., Pawar, S., et al., Investigation of thundercloud features in different regions, Remote Sens., 2021, vol. 13, no. 16, p. 3216.

    Article  ADS  Google Scholar 

  56. Slyunyaev, N.N., Ilin, N.V., and Mareev, E.A., Modeling contributions of continents and oceans to the diurnal variation of the global electric circuit, Geophys. Res. Lett., 2019a, vol. 46, no. 10, pp. 5516–5525.

    Article  ADS  Google Scholar 

  57. Slyunyaev, N.N., Kalinin, A.V., and Mareev, E.A., Thunderstorm generators operating as voltage sources in global electric circuit models, J. Atmos. Sol.-Terr. Phys., 2019b, vol. 183, pp. 99–109.

    Article  ADS  Google Scholar 

  58. Slyunyaev, N.N., Frank-Kamenetsky, A.V., Ilin, N.V., et al., Electric field measurements in the Antarctic reveal patterns related to the El Niño–Southern Oscillation, Geophys. Res. Lett., 2021a, vol. 48, no. 21, p. e2021GL095389.

  59. Slyunyaev, N.N., Ilin, N.V., Mareev, E.A., et al., The global electric circuit land–ocean respons1e to the El Niño–Southern Oscillation, Atmos. Res., 2021b, vol. 260, p. 105626.

    Article  Google Scholar 

  60. Smirnov, B.M. and Son, E.E., Electrical processes in atmospheric air, Teplofiz. Vys. Temp., 2022, vol. 60, no. 4, pp. 589–624.

    Google Scholar 

  61. Smirnov, S., Negative anomalies of the earth’s electric field as earthquake precursors, Geosciences, 2019, vol. 10, no. 1, p. 10.

    Article  ADS  Google Scholar 

  62. Smirnov, S.E., Mikhailov, Yu.M., Mikhailova, G.A., et al., Features of winter thunderstorms in Kamchatka, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 6, pp. 696–703.

  63. Snegurov, A.V. and Snegurov, V.S., Comparison of the characteristics of multi-point lightning direction finding systems, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 2019, no. 595, pp. 22–62.

  64. Stadnichuk, E. and Svechnikova, E., The criterion for self-sustaining production of relativistic runaway electron avalanches by the positron feedback in thunderstorms, Atmos. Res., 2022, vol. 277, p. 106329.

    Article  Google Scholar 

  65. Surkov, V.V. and Hayakawa, M., Progress in the study of transient luminous and atmospheric events: a review, Surv. Geophys., 2020, vol. 41, no. 5, pp. 1101–1142.

    Article  ADS  Google Scholar 

  66. Svechnikova, E.K., Il’in, N.V., and Mareev, E.A., Meteorological characteristics of energetic atmospheric phenomena, Pis’ma Fiz. Elem. Chastits At. Yadra, 2020, vol. 17, no. 6, pp. 791–802.

    Google Scholar 

  67. Svechnikova, E.K., Ilin, N.V., Mareev, E.A., et al., Characteristic features of the clouds producing thunderstorm ground enhancements, J. Geophys. Res.: Atmos., 2021, vol. 126.

  68. Svidelsky, S.S., Litvinova, V.S., Kupovykh, G.V., et al., Formation of the atmospheric electrode layer structure, Izv. Yuzhn. Fed. Univ.: Tech. Nauki, 2020, no. 5, pp. 130–141.

  69. Syssoev, A.A. and Iudin, D.I., On a possible mechanism of space stem formation at the negative corona streamer burst periphery, Atmos. Res., 2021, vol. 259, p. 105685.

    Article  Google Scholar 

  70. Syssoev, A.A., Iudin, D.I., Bulatov, A.A., et al., Numerical simulation of stepping and branching processes in negative lightning leaders, J. Geophys. Res.: Atmos., 2020, vol. 125, no. 7, p. e2019JD031360.

  71. Syssoev, A.A., Iudin, D.I., Iudin, F.D., et al., On the problem of critical electric field of atmospheric air, Atmosphere, 2021, vol. 12, no. 8, p. 1046.

    Article  ADS  CAS  Google Scholar 

  72. Syssoev, A.A., Iudin, D.I., Iudin, F.D., et al., Relay charge transport in thunderclouds and its role in lightning initiation, Sci. Rep., 2022, vol. 12, no. 1, p. 7090.

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  73. Tarabukina, L. and Kozlov, V., Seasonal variability of lightning activity in Yakutia in 2009–2019, Atmosphere, 2020, vol. 11, no. 9, p. 918.

    Article  ADS  Google Scholar 

  74. Tarabukina, L.D., Kozlov, V.I., Innokent’ev, D.E., Analysis of 11-year dynamics of the spatial distribution of lightning density in North Asia, Vestn. Kamchatskoi Reg. Assots. Uchebno-Nauchnyi Tsentr, Fiz.-Mat. Nauki, 2021, no. 1, pp. 159–173.

  75. Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., et al., Simulation of the color of high-altitude atmospheric discharges based on repetitively pulsed discharges in air, nitrogen, and argon, Opt. Atmos. Okeana, 2022, vol. 35, no. 4, pp. 279–283.

    Google Scholar 

  76. Temnikov, A., Belova, O., Chernensky, L., et al., Peculiarities of spectrum of electromagnetic signals induced by discharges from artificial thunderstorm cell, J. Electrost., 2022, vol. 115, p. 103660.

    Article  Google Scholar 

  77. Tkachev, I.D., Vasil’ev, R.V., and Belousova, E.P., Cluster analysis of lightning discharges from Vereya-MR network data, J. Sol.-Terr. Phys., 2021, vol. 7, no. 4, pp. 85–92.

    Google Scholar 

  78. Veremei, N.E., Dovgalyuk, Yu.A., Toropova, et al., Impact of thermal inhomogeneities of the underlying surface on the formation and development of convective clouds and associated hazardous weather phenomena, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 2022, no. 606, pp. 32–49.

  79. Zainetdinov, B.G., Klovo, A.G., Kudrinskaya, T.V., et al., Formation of daily variations in the atmospheric electric field near the Earth’s surface in various meteorological conditions, Tr. Voen.-Kosm. Akad. im. A.F. Mozhaiskogo, 2020, no. S674, pp. 176–180.

  80. Zekoreev, R.Kh., Study of the state of the atmospheric electric field in an open-pit mining area, Nauka. Innov. Tekhnol., 2022, no. 3, pp. 139–158.

Download references

Funding

The work was carried out within the framework of the state assignment of IPFRAN (project no. FFUF-2021-0010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Mareev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Russian National Report: Meteorology and Atmospheric Sciences: 2019–2022: for the XXXVIII General Assembly of the International Union of Geodesy and Geophysics (Berlin, Germany, July 11–20, 2023) / Ed.: I.I. Mokhov, A.A. Krivolutsky. – Moscow: MAKS Press, 2023. – 440 p. ISBN 978-5-317-07017-5. https://doi.org/10.29003/m3460.978-5-317-07017-5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mareev, E.A., Stasenko, V.N. & Shatalina, M.V. Russian Studies on Atmospheric Electricity in 2019–2022. Izv. Atmos. Ocean. Phys. 59 (Suppl 3), S425–S436 (2023). https://doi.org/10.1134/S0001433823150082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823150082

Keywords:

Navigation