Skip to main content
Log in

Russian Research in the Field of Atmospheric Chemistry in 2019–2022

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A brief overview of the work of Russian scientists in the field of atmospheric chemistry in 20190–2022 is presented, including work on the chemistry of the troposphere, the chemistry of the ozone layer, the study of heterophase processes, and the chemical aspects of climate and its change. The review was prepared in the Commission on Atmospheric Chemistry of the Section of Meteorology and Atmospheric Sciences of the National Geophysical Committee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Ageev, B.G. and Ponomarev, Yu.N., Estimation of the absorption cross section of the forbidden vibrational band of hydrogen in nanoporous aerogel, Atmos. Oceanic Opt., 2020, vol. 33, no. 2, pp. 321–323.

    Article  CAS  Google Scholar 

  2. Ageev, B.G., Sapozhnikova, V.A., Gruzdev, A.N., Golovatskaya, E.A., Dyukarev, E.A., and Savchuk, D.A., Comparison of residual gas characteristics in annual rings of Scots pine trees, Atmos. Oceanic Opt., 2019, vol. 32, no. 2, pp. 275–283.

    Article  Google Scholar 

  3. Aloyan, A.E., Arutyunyan, V.O., and Yermakov, A.N., Modeling the Junge layer formation in northern latitudes: Spatiotemporal structure and particle composition, Russ. Meteorol. Hydrol., 2019a, vol. 44, no. 5, pp. 311–316.

    Article  Google Scholar 

  4. Aloyan, A.E., Yermakov, A.N., and Arutyunyan, V.O., Ice particle formation in the lower stratosphere, Russ. J. Phys. Chem. B, 2019b, vol. 38, no. 1, pp. 214–218.

    Article  Google Scholar 

  5. Aloyan, A.E., Yermakov, A.N., and Arutyunyan, V.O., Modeling the influence of ions on the dynamics of formation of atmospheric aerosol, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 1, pp. 104–109.

    Article  Google Scholar 

  6. Andreev, V.V., Arshinov, M.Yu., Belan, B.D., Belan, S.B., Davydov, D.K., Demin, V.I., Dudorova, N.V., Elansk-y, N.F., Zhamsueva, G.S., Zayakhanov, A.S., Ivlev, G.A., Kozlov, A.V., Konovaltseva, L.V., Kotel’nikov, S.N., Kuznetsova, I.N., et al., Tropospheric ozone concentration on the territory of Russia in 2021, Atmos. Oceanic Opt., 2022, vol. 35, no. 7, pp. 741–757.

    Article  ADS  CAS  Google Scholar 

  7. Anisimov, O.A., Zimov, A.S., Volodin, E.M., and Lavrov, S.A., Methane emission in the Russian permafrost zone and evaluation of its impact on global climate, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 5, pp. 377–385.

    Article  Google Scholar 

  8. Arzhanov, M.M., Malakhova, V.V., Mokhov, I.I., and Parfenova, M.R., Stability of relict methane hydrates under climate change in the Holocene, in CITES-2019. Mezhdunarodnaya molodezhnaya shkola i konferentsiya po vychislitel’no-informatsionnym tekhnologiyam dlya nauk ob okruzhayushchei srede. Sbornik tezisov (CITES-2019: International School of Young Scientists and Conference on Computational and Information Technologies for Environmental Sciences), Tomsk, 2019, pp. 128–131.

  9. Ashabokov, B.A., Fedchenko, L.M., Shapovalov, V.A., Lesev, V.N., and Sherieva, M.A., Numerical modeling of the influence of the atmospheric wind field structure on the macro- and microstructure characteristics of convective clouds, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 6, pp. 569–577.

    Article  Google Scholar 

  10. Babushkin, P.A., Matvienko, G.G., and Oshlakov, V.K., Spectral analysis of aqueous aerosol by femtosecond pulse laser-induced breakdown method, Atmos. Oceanic Opt., 2022, vol. 35, no. 5, pp. 485–489.

    Article  ADS  Google Scholar 

  11. Bazhenov, O.E., Ozone anomaly during winter–spring 2019–2020 in the Arctic and over the North of Eurasia using satellite (Aura MLS/OMI) observations, Atmos. Oceanic Opt., 2021, vol. 34, no. 7, pp. 643–648.

    Article  ADS  CAS  Google Scholar 

  12. Bazhenov, O.E., Elnikov, A.V., and Sysoev, E.M., Total ozone content over Tomsk in 1994–2017: Results of statistical analysis, Atmos. Oceanic Opt., 2019, vol. 32, no. 7, pp. 680–685.

    Article  CAS  Google Scholar 

  13. Belan, B.D., Ivlev, G.A., and Sklyadneva, T.K., The relationship between ultraviolet radiation and meteorological factors and atmospheric turbidity: Part I. Role of total ozone content, clouds, and aerosol optical depth, Atmos. Oceanic Opt., 2020, vol. 33, no. 8, pp. 638–644.

    Article  ADS  CAS  Google Scholar 

  14. Belikovich, M.V., Ryskin, V.G., Kulikov, M.Yu., Krasil’nikov, A.A., Shvetsov, A.A., and Feigin, A.M., Microwave observations of atmospheric ozone above Nizhny Novgorod in the winter of 2017–2018, Radiophys. Quantum Radiophys., 2020, vol. 63, no. 3, pp. 191–206

    Article  ADS  Google Scholar 

  15. Beresnev, S.A. and Vasil’eva, M.S., The hypothesis of volcanogenic soot and the possibility of its observational confirmation, Atmos. Oceanic Opt., 2020, vol. 33, no. 6, pp. 531–538.

    Article  ADS  CAS  Google Scholar 

  16. Biktash, L.Z., Influence of total solar irradiance on the Earth’s climate, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 3, pp. 368–373.

  17. Chengxun, Y., Zhijian, L., Bychkov, V.L., Bychkov, D.V., Golubkov, M.G., Maslov, T.A., Rodionov, I.D., Stepanov, I.G., Umanskii, S.Ya., and Golubkov, G.V., Distribution of positive and negative ion concentrations in the troposphere, Russ. J. Phys. Chem. B, 2022, vol. 41, no. 10, pp. 955–964.

    Article  Google Scholar 

  18. Chesnokova, T.Yu., Makarova, M.V., Chentsov, A.V., Voronina, Yu.V., Zakharov, V.I., Rokotyan, N.V., Langerock, B., Retrieval of carbon monoxide total column in the atmosphere from high resolution atmospheric spectra, Atmos. Oceanic Opt., 2019, vol. 32, no. 4, pp. 378–386.

    Article  CAS  Google Scholar 

  19. Chistyakova, N.F., Zhuravleva, N.N., Andreev, O.V., and Martyushova, A.I., Natural mechanism of formaldehyde transformation in atmospheric air over Tyumen, Meteorol. Gidrol., 2021, no. 5, pp. 76–85.

  20. Dembelov, M. G. and Bashkuev, Yu. B., Estimation of the tropospheric moisture content derived from GPS observations, radio sounding data, and measurements with a water vapor radiometer, Atmos. Oceanic Opt., 2022, vol. 35, no. 5, pp. 359–365.

    Article  ADS  Google Scholar 

  21. Dementyeva, S.O., Ilin, N.V., Shatalina, M.V., and Mareev, E.A., Forecast of convective events and its verification against atmospheric electricity observations, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 2, pp. 123–129.

    Article  Google Scholar 

  22. Denisov, E.T. and Denisova, T.G., Reactivity of polar compounds in reactions with oxygen atoms, Kinet. Catal., 2019, vol. 60, no. 1, pp. 1–7.

    Article  CAS  Google Scholar 

  23. Denisov, S.N., Eliseev, A.V., and Mokhov, I.I., Contribution of natural and anthropogenic emissions of CO2 and CH4 to the atmosphere from the territory of Russia to global climate changes in the twenty-first century, Dokl. Earth Sci., 2019, vol. 488, no. 1, pp. 1066–1071.

    Article  ADS  CAS  Google Scholar 

  24. Denisov, S.N., Eliseev, A.V., and Mokhov, I.I., Model estimates for contribution of natural and anthropogenic CO2 and CH4 emissions into the atmosphere from the territory of Russia, China, Canada, and the USA to global climate change in the 21st century, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 10, pp. 735–747.

    Article  Google Scholar 

  25. Dvoretskaya, I.V., Kruchenitskii, G.M., Statnikov, K.A., Analysis of the distribution of anomalies and long-term variability of total ozone from satellite data, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 6, pp. 398–402.

    Article  Google Scholar 

  26. Elansky, N.F., Golitsyn, G.S., Crutzen, P.I., Belikov, I.B., Brenninkmeijer, C.A.M., and Skorokhod, A.I., Observations of the atmospheric composition over Russia: TROICA experiments, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 1, pp. 72–90.

    Article  Google Scholar 

  27. Elansky, N.F., Shilkin, A.V., Ponomarev, N.A., Zakharova, P.V., Kachko, M.D., and Polyakov, T.I., Spatiotemporal variations in the content of pollutants in the Moscow air basin and their emissions, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 1, pp. 80–94.

    Article  Google Scholar 

  28. Eremina, I.D., Chemical composition of atmospheric precipitation in Moscow and trends in long-term variations, Vestn. Mosk. Univ., Ser. 5: Geogr., 2019, no. 3, pp. 3–10.

  29. Fedotov, V.Kh. and Kol’tsov, N.I., Autonomous kinetic invariants of linear chemical reactions, Kinet. Catal., 2019, vol. 60, no. 6, pp. 776–782.

    Article  CAS  Google Scholar 

  30. Filei, A.A., Andreev, A.I., Kuchma, M.O., and Uspensky, A.B., Retrieval of total precipitable water from Meteor-M No. 2-2 MTVZA-GYa data using a neural network algorithm, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 4, pp. 272–280.

    Article  Google Scholar 

  31. Filippov, S.P. and Yaroslavtsev, A.V., Hydrogen energy: Development prospects and materials, Russ. Chem. Rev., 2021, vol. 90, no. 6, pp. 627–643.

    Article  ADS  Google Scholar 

  32. Gabis, I.P., Quasi-biennial oscillation of zonal wind in the equatorial stratosphere and its influence on interannual fluctuations in the depth of the Antarctic ozone hole, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 5, pp. 287–294.

    Article  ADS  Google Scholar 

  33. Ginzburg, A.S. and Dokukin, S.A., Influence of thermal air pollution on the urban climate (estimates using the COSMO-CLM model), Izv., Atmos. Ocean. Phys., 2021, vol. 57, vol. 57, no. 1, pp. 47–59.

  34. Ginzburg, A.S., Aleksandrov, G.A., and Chernokulsky, A.V., Climatic criteria of the need for preventive adaptation, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 6, pp. 536–544.

    Article  Google Scholar 

  35. Golitsyn, G.S. and Vasil’ev, A.A., Climate change and its impact on the frequency of extreme hydrometeorological events, Russ. Meteorol. Hydrol., 2019, no. 11, pp. 9–12.

  36. Golovko, V.V., Zueva, G.A., and Kiseleva, T.I., Cluster composition of anemophilous plant pollen entering the atmosphere, Atmos. Oceanic Opt., 2022, vol. 35, no. 6, pp. 673–679.

    Article  ADS  Google Scholar 

  37. Golovushkin, N.A., Kuznetsova, I.N., Konovalov, I.B., Nakhaev, M.I., Kozlov, V.S., Beekmann, M., Analysis of brown carbon content and evolution in smokes from Siberian forest fires using AERONET measurements, Atmos. Oceanic Opt., 2020, vol. 33, no. 3, pp. 267–273.

    Article  CAS  Google Scholar 

  38. Golubkov, G.V., Bychkov, V.L., Gotovtsev, V.O., Adamson, S.O., D’yakov, Yu.A., Rodionov, I.D., and Golubkov, M.G., Glow of heavy dust particles in Earth’s atmosphere during an earthquake, Russ. J. Phys. Chem. B, 2020, vol. 39, no. 4, pp. 351–354.

    Article  Google Scholar 

  39. Gorbarenko, E.V., Radiation climate of Moscow, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 7, pp. 478–487.

    Article  Google Scholar 

  40. Gorbarenko, E.V., Extremes and main trends in long-term variability of atmospheric radiation parameters in Moscow, Vestn. Mosk. Univ., Ser. 5: Geogr., 2022, no. 6, pp. 90–103.

  41. Gorchakov, G.I., Karpov, A.V., Gushchin, R.A., Dotsenko, O.I., and Buntov, D.V., Stratification of aleurite and sand particle size distribution in windsand flux over desertified areas, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 5, pp. 438–442.

    Article  Google Scholar 

  42. Gorchakov, G.I., Dotsenko, O.I., Kopeikin, V.M., Karpov, A.V., Gushchin, R.A., Gorchakova, I.A., Mirsaitov, S.F., and Ponomareva, T.Ya., Dusty haze over the North China Plain, Opt. Atmos. Okeana, 2022, vol. 35, no. 1, pp. 125–132.

    Article  CAS  Google Scholar 

  43. Gruzdev, A.N., Accounting for autocorrelation in the linear regression problem by an example of analysis of the atmospheric column NO2 content, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 1, pp. 65–72.

    Article  Google Scholar 

  44. Gruzdev, A.N. and Elokhov, A.S., Changes in the column content and vertical distribution of NO2 according to the results of 30-year measurements at the Zvenigorod Scientific Station of the A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 1, pp. 91–103.

    Article  Google Scholar 

  45. Gubanova, D.P., Chkhetiani, O.G., Kuderina, T.M., Iordanskii, M.A., Maksimenkov, L.O., and Artamonova, M.S., Long-term variability of the composition of near-surface aerosol over desertified and arid zones in southern Russia, Atmos. Oceanic Opt., 2022, vol. 35, no. 6, pp. 680–690.

    Article  ADS  Google Scholar 

  46. Ionov, D.V. and Poberovskii, A.V., Variability of nitrogen oxides in the atmospheric surface layer near Saint Petersburg, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 10, pp. 720–726.

    Article  Google Scholar 

  47. Ivanova, A.R., International practices of thunderstorm nowcasting, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 11, pp. 756–763.

    Article  Google Scholar 

  48. Kalashnik, M.V., Wave precursors from moving oscillating sources, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 6, pp. 529–535.

    Article  Google Scholar 

  49. Karpov, A.V., Gorchakov, G.I., Gushchin, R.A., and Dotsenko, O.I., Vertical turbulent dust-aerosol fluxes, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 5, pp. 495–503.

    Article  Google Scholar 

  50. Kashkin, V.B., Odintsov, R.V., and Rubleva, T.V., On the effects of a nuclear explosion on stratospheric ozone, Atmos. Oceanic Opt., 2022, vol. 35, no. 3, pp. 402–406.

    Article  ADS  CAS  Google Scholar 

  51. Klyueva, M.V., Shkol’nik, Yu.L., Rudakova, Yu.L., Pavlova, T.V., and Kattsov, V.M., Summer tourism in the context of future climate change in Russia: Projections based on the large ensemble of high-resolution conditional forecasts, Meteorol. Gidrol., 2020, no. 6, pp. 47–59.

  52. Kolennikova, M.A., Vargin, P.N., and Gushchina, D.Yu., Interrelations between El Niño indices and major characteristics of polar stratosphere according to CMIP5 models and reanalysis, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 6, pp. 351–364.

    Article  Google Scholar 

  53. Kovalev, N.A., Netyagin, O.V., and Sazhin, I.V., Experience of cloud seeding to extinguish wildfires in Siberia and the Far East in 2017–2021: Preliminary results and performance assessment issues, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 7, pp. 530–534.

    Article  Google Scholar 

  54. Kozlov, S.N. and Zhestkov, V.E., Effect of the composition of a gas mixture on determining the probability of heterogeneous recombination of H, O, and N atoms on quartz, Russ. J. Phys. Chem. B, 2022, vol. 41, no. 11, pp. 1030–1037.

    Article  Google Scholar 

  55. Krivolutsky, A.A., V’yushkova, T.Yu., Cherepanova, L.A., Banin, M.V., Repnev, A.I., and Kukoleva, A.A., Numerical global models of the ionosphere, ozonosphere, temperature regime, and circulation for altitudes of 0–130 km: Results and prospects, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 9, pp. 596–605.

    Article  Google Scholar 

  56. Kropotkina, E.P., Rozanov, S.B., Lukin, A.N., Ignat’ev, A.N., and Solomonov, S.V., Characteristics of changes in the ozone content in the upper stratosphere over Moscow during the cold half-years of 2014–2015 and 2015–2016, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 2, pp. 212–220.

  57. Krupnov, A.A. and Pogosbekyan, M.Yu., Analysis of experimental data on CO and N2O interaction with CO2 production based on the results of DFT calculations, Kinet. Catal., 2019, vol. 60, no. 2, pp. 164–174.

    Article  CAS  Google Scholar 

  58. Kulikova, I.A., Kruglova, E.N., and Khan, V.N., Evaluation of practical predictability of blocking anticyclones using modern hydrodynamic models, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 1, pp. 1–13.

    Article  Google Scholar 

  59. Kuminov, A.A., Yushkov, V.A., Gvozdev, Yu.N., Shtyrkov, O.V., Lykov, A.D., and Balugin, N.V., Meteorological rocket sounding for atmospheric research and geophysical monitoring, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 9, pp. 571–578.

    Article  Google Scholar 

  60. Kuryatnikova, N.A., Malygina, N.S., and Mitrofanova, E.Yu., Atmospheric input and diversity of bioaerosols in winter precipitation in the south of Western Siberia, Atmos. Oceanic Opt., 2022, vol. 35, no. 1, pp. 146–150.

    Article  ADS  CAS  Google Scholar 

  61. Larin, I.K., Lifetime of odd oxygen, Russ. J. Phys. Chem. B, 2019a, vol. 38, no. 10, pp. 867–873.

    Article  ADS  Google Scholar 

  62. Larin, I.K., Russian investigations in atmospheric chemistry for 2015–2018, Izv., Atmos. Ocean. Phys., 2019b, vol. 55, no. 6, pp. 552–561.

    Article  Google Scholar 

  63. Larin, I.K., On the theory of chain processes in the ozone layer, Russ. J. Phys. Chem. B, 2019c, vol. 13, no. 5, pp. 548–553.

    Article  ADS  CAS  Google Scholar 

  64. Larin, I.K., Effect of global warming on the stratospheric ozone depletion rate in catalytic cycles, Russ. J. Phys. Chem. B, 2020a, vol. 14, no. 4, pp. 344–350.

    Article  CAS  Google Scholar 

  65. Larin, I.K., Destruction of atmospheric ozone in Ox, HOx, NOx, ClOx, BrOx, and IOx catalytic cycles, Izv., Atmos. Ocean. Phys., 2020b, vol. 56, no. 2, pp. 165–172.

    Article  Google Scholar 

  66. Larin, I.K., Destruction of stratospheric ozone in catalytic cycles in the Northern Hemisphere at the end of the 20th century, Russ. J. Phys. Chem. B, 2020c, vol. 14, no. 3, pp. 336–343.

    Article  CAS  Google Scholar 

  67. Larin, I.K., On ozone depletion in the mesosphere, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 2, pp. 150–157.

    Article  Google Scholar 

  68. Larin, I.K., Spasskii, A.I., and Trofimova, E.M., Resonance fluorescence measurement of the rate constant of the reaction of chlorine atoms with CF3Br at temperatures of 273–353 K, Russ. J. Phys. Chem. B, 2019, vol. 13, no. 2, pp. 256–261.

    Article  CAS  Google Scholar 

  69. Larin, I.K., Belyakova, T.I., Messineva, N.A., Spasskii, A.I., and Trofimova, E.M., UV photolysis in a C2H2F2Br2 mixture with oxygen, Russ. J. Phys. Chem. B, 2020a, vol. 14, no. 12, pp. 893–898.

    Article  CAS  Google Scholar 

  70. Larin, I.K., Spasskii, A.I., and Trofimova, E.M., Kinetics of a heterogeneous reaction of hydrogen sulfide with iodine oxide in the temperature range of 273 to 368 K, Russ. J. Phys. Chem. B, 2020b, vol. 14, no. 10, pp. 781–786.

    Article  CAS  Google Scholar 

  71. Larin, I.K., Aloyan, A.E., and Yermakov, A.N., Influence of sulfate aerosol in the lower stratosphere on the lifetime of odd oxygen, Russ. J. Phys. Chem. B, 2021a, vol. 15, no. 3, pp. 357–361.

    Article  CAS  Google Scholar 

  72. Larin, I.K., Aloyan A.E., Ermakov A.N. Influence of particles of the Junge layer on the rate of ozone destruction in the lower stratosphere, Russ. J. Phys. Chem. B, 2021b, vol. 15, no. 5, pp. 577–581.

    Article  CAS  Google Scholar 

  73. Larin, I.K., Belyakova, T.I., Messineva, N.A., Spasskii, A.I., and Trofimova, E.M., Heterogeneous reaction of dimethyl sulfide with iodine oxide in a temperature range of 291–365 K, Kinet. Catal., 2021c, vol. 62, no. 2, pp. 245–254.

    Article  CAS  Google Scholar 

  74. Larin, I.K., Belyakova, T.I., Messineva, N.A., Spasskii, A.I., and Trofimova, E.M., Photolysis of C2H2F2Br2 mixture with O2 in the oxygen pressure range 1–3.5 Torr, Russ. J. Phys. Chem. B, 2021d, vol. 15, no. 10, pp. 795–800.

    CAS  Google Scholar 

  75. Lysenko, S.A., F. Loginov, V.F., and Zaiko, P.O., Climate change impacts on bioproductivity of terrestrial ecosystems in the Belarusian–Ukrainian Polesie region, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 1, pp. 41–49.

    Article  Google Scholar 

  76. Malkarova, A.M., Activities on active influences on hydrometeorological processes in the Hydrometeorological Service of Russia, Russ. Meteorol. Hydrol., 2022, no. 7, pp. 5–10.

  77. Miroshnichenko, E.A., Kon’kova, Yu.N., Matyushin, Yu.N., Vorob’ev, A.B., Inozemtsev, Ya.O., and Inozemtsev, A.V., Radical reorganization of cyclic compounds, Russ. J. Phys. Chem. B, 2022, vol. 16, no. 12, pp. 1015–1018.

    Article  CAS  Google Scholar 

  78. Mokhov I.I., Vserossiiskaya konferentsiya “Izmeneniya klimata: prichiny, riski, posledstviya, problemy adaptatsii i regulirovaniya”. Sbornik tezisov dokladov (All-Russian Conference “Climate Change: Causes, Risks, Consequences, and Problems of Adaptation and Regulation”: Abstracts of Presentations), Moscow: Fizmatkniga, 2019.

  79. Mokhov, I.I., Features of contemporary changes in the Arctic and their consequences, Probl. Arkt. Antarkt., 2020, vol. 66, no. 4, pp. 446–462.

    Google Scholar 

  80. Mokhov, I.I., Changes in the frequency of phase transitions of different types of El Niño phenomena in recent decades, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 1, pp. 1–6.

    Article  Google Scholar 

  81. Mokhov, I.I. and Parfenova, M.R., Relationships between satellite-derived snow cover extent in the Northern Hemisphere and surface air temperature, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 2, pp. 98–106.

    Article  Google Scholar 

  82. Mokhov, I.I. and Smirnov, D.A., Empirical estimates of the contribution of greenhouse gases and natural climatic variability to surface air temperature trends for various latitudes, Dokl. Earth Sci., 2022a, vol. 503, no. 1, pp. 114–118.

    Article  ADS  CAS  Google Scholar 

  83. Mokhov, I.I. and Smirnov, D.A., Estimating contributions of natural climate variability modes and greenhouse gases to surface temperature trends in the Southern Hemisphere from observations, Izv., Atmos. Ocean. Phys., 2022b, vol. 58, no. 2, pp. 131–139.

    Article  Google Scholar 

  84. Mokhov, I.I. and Timazhev, A.V., Atmospheric blocking and changes in its frequency in the 21st century simulated with the ensemble of climate models, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 6, pp. 369–377.

    Article  Google Scholar 

  85. Mokhov, I.I. and Timazhev, A.V., Integral index of atmospheric blocking activity in the Northern Hemisphere in recent decades, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 6, pp. 545–552.

    Article  Google Scholar 

  86. Mokhov, I.I., Eliseev, A.V., and Guryanov, V.V., Model estimates of global and regional climate changes in the Holocene, Dokl. Earth Sci., 2020, vol. 490, no. 1, pp. 23–27.

    Article  ADS  CAS  Google Scholar 

  87. Morozov, I.I., Vasil’ev, E.S., Volkov, N.D., Morozova, O.S., Nigmatulin, D.R., Syromyatnikova, A.G., Savilov, S.V., Reactions of benzyl- and hydroxyethyl radicals with nitric oxide, Russ. J. Phys. Chem. B, 2022, vol. 16, no. 10, pp. 877–882.

    Article  Google Scholar 

  88. Muryshev, K.E., Eliseev, A.V., Denisov, S.N., et al., Phase shift between changes in global temperature and atmospheric CO2 content under external emissions of greenhouse gases into the atmosphere, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 3, pp. 235–241.

    Article  Google Scholar 

  89. Nenajdenko, V.G., Access to molecular complexity. Multicomponent reactions involving five or more components, Russ. Chem. Rev., 2020, vol. 89, no. 11, pp. 1274–1336.

    Article  ADS  CAS  Google Scholar 

  90. Nerobelov, G.M., Timofeyev, Yu.M., Poberovskii, A.V., Filippov, N.N., and Imhasin, H.H., Ground-based spectroscopic measurements of the total ammonia content in the vicinity of St. Petersburg, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 6, pp. 560–568.

    Article  Google Scholar 

  91. Nikiforova, M.P., Vargin, P.N., and Zvyagintsev, A.M., Ozone anomalies over Russia in the winter-spring of 2015/2016, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 1, pp. 23–32.

    Article  Google Scholar 

  92. Nusinov, A.A., Kazachevskaya, T.V., Katyushina, V.V., A model of fluxes of solar extreme ultraviolet irradiance, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 3, pp. 365–271.

  93. Panchenko, M.V., Kabanov, M.V., Pkhalagov, Yu.A., Belan, B.D., Kozlov, V.S., Sakerin, S.M., Kabanov, D.M., Uzhegov, V.N., Shchelkanov, N.N., Pol’kin, V.V., Terpugova, S.A., Tolmachev, G.N., Yausheva, E.P., Arshinov, M.Yu., Simonenkov, D.V., et al., Integrated studies of tropospheric aerosol at the institute of atmospheric optics (development stages), Atmos. Oceanic Opt., 2020, vol. 33, no. 1, pp. 27–41.

    Article  Google Scholar 

  94. Panov, D.Yu. and Sakharova, E.Yu., Using radar data for grain crops yield forecasting in the Novosibirsk region, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 6, pp. 473–478.

    Article  Google Scholar 

  95. Pastukhova, A.S., Chubarova, N.E., Zhdanova, E.Yu., Galin, V.Ya., and Smyshlyaev, S.P., Numerical simulation of variations in ozone content, erythemal ultraviolet radiation, and ultraviolet resources over Northern Eurasia in the 21st century, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 3, pp. 242–250.

    Article  Google Scholar 

  96. Porfiriev, B.N., Kolpakov, A.Yu., Eliseev, D.O., and Streletskii, D.A., Assessment and forecasting of additional costs of oil-production companies to reduce risks from permafrost degradation, Stud. Russ. Econ. Dev., 2022, vol. 33, no. 5, pp. 663–670.

    Article  Google Scholar 

  97. Rakitin, V.S., Elansky, N.F., Skorokhod, A.I., Dzhola, A.V., Rakitina, A.V., Shilkin, A.V., Kirillova, N.S., and Kazakov, A.V., Long-term tendencies of carbon monoxide in the atmosphere of the Moscow megapolis, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 1, pp. 116–125.

    Article  Google Scholar 

  98. Rogachev, A.S., Mechanical activation of heterogeneous exothermic reactions in powder mixtures, Russ. Chem. Rev., 2019, vol. 88, no. 9, pp. 875–900.

    Article  ADS  CAS  Google Scholar 

  99. Ryzhakova, N.K., Rogova, N.S., Pokrovskaya, E.A., and Tailasheva, K.A., Influence of natural and climatic conditions on the values of the vertical turbulent diffusion coefficient for long observation periods, Izv., Atmos. Ocean. Phys., 2019, vol. 58, no. 6, pp. 553–559.

    Article  Google Scholar 

  100. Sakerin, S.M., Golobokova, L.P., Kabanov, D.M., Kalashnikova, D.A., Kozlov, V.S., Kruglinskii, I.A., Makarov, V.I., Makshtas, A.P., Popova, S.A., Radionov, V.F., Simonova, G.V., Turchinovich, Yu.S., Khodzher, T.V., Khuriganova, O.I., Chankina, O.V., and Chernov, D.G., Measurements of physicochemical characteristics of atmospheric aerosol at research station ice base Cape Baranov in 2018, Atmos. Oceanic Opt., 2019, vol. 32, no. 6, pp. 511–520.

    Article  CAS  Google Scholar 

  101. Semenov, S.M., Greenhouse effect and modern climate, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 10, pp. 725–734.

    Article  Google Scholar 

  102. Shatalina, M.V., Il’in, N.V., and Mareev, E.A., Characteristics of hydrometeorological hazards in Nizhny Novgorod according to in-situ observations of electric field, Meteorol. Gidrol., 2021a, no. 6, pp. 107–111.

  103. Shatalina, M.V., Klimenko, V.V., Mareev, N.A., The correlation of temperature, stratus cloudiness, and electric field strength in the atmosphere, Dokl. Earth Sci., 2021b, vol. 499, no. 1, pp. 595–598.

    Article  ADS  CAS  Google Scholar 

  104. Shatalina, M.V., Mareev, E.A., Klimenko, V.V., Kuterin, F.A., and Nicoll, K.A., Experimental study of diurnal and seasonal variations in the atmospheric electric field, Radiophys. Quantum Electron., 2019c, vol. 62, no. 3, pp. 183–191.

    Article  ADS  Google Scholar 

  105. Shikhov, A.N., Chernokulsky, A.V., Sprygin, A.A., and Yarynich, Yu.I., Estimation of convective atmospheric instability during squalls, tornadoes, and large hail events from satellite observations and ERA5 reanalysis data, Atmos. Oceanic Opt., 2022, vol. 35, no. 6, pp. 793–801.

    Article  ADS  Google Scholar 

  106. Shilin, A.G., Shilina, A.S., Andreev, Yu.V., Ivanov, V.N., Panov, V.N., Puzov, Yu.A., and Savchenko, A.V., Investigation of adsorption modes of molecular iodine and a possibility of modifying ice-forming characteristics of silicate and aluminosilicate aerosol with iodine compounds, Russ. Meteorol. Hydrol., 2022, vol 47, no. 7, pp. 542–547.

    Article  Google Scholar 

  107. Sibir, E.E., Radionov, V.F., and Rusina, E.N., Results of long-term observations of total ozone in Antarctica and over the Atlantic and Southern oceans, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 3, pp. 161–168.

    Article  Google Scholar 

  108. Sirin, A.A., Medvedeva, M.A., Itkin, V.Yu., Makarov, D.A., and Korotkov, V.N., Peat fire detection to estimate greenhouse gas emissions, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 10, pp. 748–757.

    Article  Google Scholar 

  109. Skorokhod, A.I., Rakitin, V.S., and Kirillova, N.S., Impact of COVID-19 pandemic preventing measures and meteorological conditions on the atmospheric air composition in Moscow in 2020, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 3, pp. 183–190.

    Article  Google Scholar 

  110. Smyshlyaev, S.P., Blakitnaya, P.A., Motsakov, M.A., Numerical modeling of the influence of physical and chemical factors on the interannual variability of Antarctic ozone, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 3, pp. 153–160.

    Article  Google Scholar 

  111. Torzhkov, I.O., Kushnir, E.A., Konstantinov, A.V., Koroleva, T.S., Efimov, S.V., and Shkol’nik, I.M., Assessment of future climate change impacts on forestry in Russia, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 3, pp. 180–186.

    Article  Google Scholar 

  112. Troshichev, O.A., Gabis, I.P., and Krivolutsky, A.A., Space weather effect on the Earth’s atmosphere, Probl. Arkt. Antarkt., 2021, vol. 67, no. 2, pp. 177–207.

    Google Scholar 

  113. Tsvetkova, N.D., Vargin, P.N., Luk’yanov, A.N., Kiryushov, B.M., Yushkov, V.A., and Khattatov, V.U., Studying chemical ozone depletion and dynamic processes in the Arctic stratosphere in the winter 2019/2020, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 9, pp. 606–615.

    Article  Google Scholar 

  114. Vargin, P.N., Nikiforova, M.P., and Zvyagintsev, A.M., Variability of the Antarctic ozone anomaly in 2011–2018, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 2, pp. 63–73.

    Article  Google Scholar 

  115. Vargin, P.N., Kalinnikova, I.A., Kostrykin, S.V., and Volodin, E.M., Impact of sea surface temperature anomalies in the equatorial and North Pacific on the Arctic stratosphere according to the INMCM5 climate model simulations, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 1, pp. 1–9.

    Article  Google Scholar 

  116. Vasil’chuk, Yu.K., Budantseva, N.A., Vasil’chuk, Dzh.Yu., Eremina, I.D., and Bludushkina, L.B., Variations in 18O and water-soluble salts in Moscow precipitation in 2014–2018., Vestn. Mosk. Univ., Ser. Geogr., 2021, no. 2, pp. 35–43.

  117. Vasiliev, E.S., Volkov, N.D., Karpov, G.V., and Morozov, I.I., Features of mass spectrometric analysis of toxic chloroacetic acids and pyridine, Khim. Bezop., 2019, vol. 3, no. 9, pp. 78–88.

    CAS  Google Scholar 

  118. Vasiliev, E.S., Karpov, G.V., Volkov, N.D., Morozov, I.I., and Savilov, S.V., Common processes of the hydration of chloroacetic acids, Russ. J. Phys. Chem. B, 2021a, vol. 15, no. 3, pp. 228–232.

    Article  CAS  Google Scholar 

  119. Vasiliev, E.S., Volkov, N.D., Karpov, G.V., Morozov, I.I., Nigmatulin, D.R., Saigina, E.A., Savilov, S.A., Umanskii, S.Ya., and Butkovskaya, N.Ya., Determination of the rate constant of the reaction of benzene with atomic fluorine by the method of competing reactions, Russ. J. Phys. Chem. B, 2021b, vol. 15, no. 10, pp. 789–794.

    Article  CAS  Google Scholar 

  120. Veres, A.I., Ekaikin, A.A. Lipenkov, V.Ya., Turkev, A.V., and Khodzher, T.V., First data on climate variability in the region of Vostok Station (Central Antarctica) over the last 2000 years according to snow-firn core data, Probl. Arkt. Antarkt., 2020, vol. 66, pp. 482–500.

    Google Scholar 

  121. Vlasov, D.V. and Eremina, I.D., Impact of rain parameters on the intensity of leaching of potentially toxic elements from the atmosphere in Moscow, in Sovremennye tendentsii i perspektivy razvitiya gidrometeorologii v Rossii: Materialy III Vserossiiskoi nauchno-prakticheskoi konferentsii (Current Trends and Prospects for the Progress of Hydrometeorology in Russia: Proceedings of the III All-Russian Scientific and Practical Conference), Irkutsk: IGU, 2020, pp. 380–388.

  122. Volodin, E.M., The mechanism of natural climate fluctuations in the Arctic and North Atlantic according to the INM RAS climate model, CITES-2019. Mezhdunarodnaya molodezhnaya shkola i konferentsiya po vychislitel’no-informatsionnym tekhnologiyam dlya nauk ob okruzhayushchei srede. Sbornik tezisov (CITES-2019: International School of Young Scientists and Conference on Computational and Information Technologies for Environmental Sciences), Tomsk, 2019, pp. 39-41.

  123. Volodin, E.M., Equilibrium sensitivity of a climate model to an increase in the atmospheric CO2 concentration using different methods to account for cloudiness, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 2, pp. 127–132.

    Article  Google Scholar 

  124. Volodin, E.M., Possible climate change in Russia in the 21st century based on the INM-CM5-0 climate model, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 5, pp. 327–333.

    Article  Google Scholar 

  125. Volodin, E.M. and Gritsun, A.S., Simulation of possible future climate changes in the 21st century in the INM-CM5 climate model, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 3, pp. 218–228.

    Article  Google Scholar 

  126. Yermakov, A.N., Aloyan, A.E., and Arutyunyan, V.O., Sulfate sources in carbonaceous aerosol particles in the urban atmosphere: The case of Irkutsk, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 3, pp. 271–280.

    Article  Google Scholar 

  127. Yermakov, A.N., Aloyan, A.E., and Arutyunyan, V.O., Seasonal variability of the ion composition, phase state, and mass concentration of aerosol in the rural and urban atmosphere over Belgium (2001–2003), Russ. Meteorol. Hydrol., 2020, no. 3, pp. 2001–2003.

  128. Zakharov, V.V., Zyuzin, V.V., Korsunskii, B.L., and Larikova, T.S., Thermal decomposition of 1-[2,2-bis(methoxy-NNO-azoxy)ethyl]-pyrazole, Russ. J. Phys. Chem. B, 2022, vol. 16, no. 12, pp. 1038–1041.

    Article  CAS  Google Scholar 

  129. Zavgorodnyaya, Yu.A., Popovicheva, O.B., Kobelev, O.V., Starodymova, D.P., Shevchenko, V.P., and Kasimov, N.S., Polycyclic aromatic hydrocarbons in the snow cover of the Yamalo-Nenets Autonomous Okrug as indicators of the influence of anthropogenic emission sources, Probl. Arkt. Antarkt., 2021, vol. 67, pp. 261–279.

    Google Scholar 

  130. Zelenov, V.V., Aparina, E.V., Kozlovskii, V.I., Sulimenkov, I.V., Kardanskii, D.A., and Nosyrev, A.E., Solid products of NO3 uptake on methane soot, Russ. J. Phys. Chem. B, 2019, vol. 13, no. 1, pp. 219–224.

    Article  CAS  Google Scholar 

  131. Zelenov, V.V. and Aparina, E.V., Time-Dependent Uptake of O3 and NO2 on Methane Soot Coatings under the Conditions of Their Competitive Adsorption, Russ. J. Phys. Chem. B, 2021, vol. 15, no. 5, pp. 919–927.

    CAS  Google Scholar 

  132. Zinchenko, A.V., Privalov, V.I., Ivakhov, V.M., and Paramonova, N.N., Model-empirical calculation of methane and carbon dioxide fluxes from peatbog soil, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 10, pp. 767–780.

    Article  Google Scholar 

  133. Zuev, V.V., Zueva, N.E., Kutsenogii, P.K., and Savelieva, E.S., Volcanogenic nanodispersed carbon aerosol in the stratosphere, Khim. Interesakh Ustoich. Razvit., 2014a, vol. 22, pp. 83–88.

    CAS  Google Scholar 

  134. Zuev, V.V., Zueva, N.E., Savelieva, E.S., Shelekhov, A.P., and Shelekhova, E.A., The role of volcanic heating of the tropical stratosphere in formation of heat centers in the Arctic regions, Atmos. Oceanic Opt., 2014b, vol. 27, no. 3, pp. 262–267.

    Article  Google Scholar 

  135. Zuev, V.V., Zueva, N.E., and Savelieva, E.S., Temperature and ozone anomalies as indicators of volcanic soot in the stratosphere, Atmos. Oceanic Opt., 2015, vol. 28, no. 1, pp. 100–106.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Larin.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larin, I.K. Russian Research in the Field of Atmospheric Chemistry in 2019–2022. Izv. Atmos. Ocean. Phys. 59 (Suppl 3), S413–S424 (2023). https://doi.org/10.1134/S0001433823150070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823150070

Keywords:

Navigation