Skip to main content
Log in

Russian Studies of Planetary Atmospheres in 2019–2022

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A review of studies on the atmospheres of planets in the solar system performed by Russian scientists in 2019–2022 is presented. This review was prepared in the Commission on Planetary Atmospheres of the National Geophysical Committee for the National Report on Meteorology and Atmospheric Science at the 28th General Assembly of the International Union of Geodesy and Geophysics (IUGG 2023) in Berlin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Alday, J., Wilson, C.F., Irwin, P.G.J., et al., Oxygen isotopic ratios in Martian water vapour observed by ACS mir on board the ExoMars trace gas orbiter, Astron. Astrophys., 2019, vol. 630, p. A91. https://doi.org/10.1051/0004-6361/201936234

    Article  CAS  Google Scholar 

  2. Alday, J., Trokhimovskiy, A., Irwin, P.G.J., et al., Isotopic fractionation of water and its photolytic products in the atmosphere of Mars, Nat. Astron., 2021a, vol. 5, pp. 943–950. https://doi.org/10.1038/s41550-021-01389-x

    Article  ADS  Google Scholar 

  3. Alday, J., Wilson, C.F., Irwin, P.G.J., et al., Isotopic composition of CO2 in the atmosphere of Mars: Fractionation by diffusive separation observed by the ExoMars trace gas orbiter, J. Geophys. Res.: Planets, 2021b, vol. 126, p. e06992. https://doi.org/10.1029/2021JE006992

    Article  Google Scholar 

  4. Aoki, S., Daerden, F., Viscardy, S., et al., Annual appearance of hydrogen chloride on Mars and a striking similarity with the water vapor vertical distribution observed by TGO/NOMAD, Geophys. Res. Lett., 2021, vol. 48, p. e92506. https://doi.org/10.1029/2021GL092506

    Article  ADS  Google Scholar 

  5. Aoki, S., Vandaele, A.C., Daerden, F., et al., Global vertical distribution of water vapor on Mars: Results from 3.5 years of ExoMars-TGO/NOMAD science operations, J. Geophys. Res.: Planets, 2022, vol. 127, p. e07231. https://doi.org/10.1029/2022JE007231

    Article  Google Scholar 

  6. Belyaev, D.A., Fedorova, A.A., Trokhimovskiy, A., et al., Revealing a high water abundance in the upper mesosphere of Mars with ACS onboard TGO, Geophys. Res. Lett., 2021, vol. 48, p. e93411. https://doi.org/10.1029/2021GL093411

    Article  ADS  Google Scholar 

  7. Belyaev, D.A., Fedorova, A.A., Trokhimovskiy, A., et al., Thermal structure of the middle and upper atmosphere of Mars from ACS/TGO CO2 spectroscopy, J. Geophys. Res.: Planets, 2022, vol. 127, p. e2022JE007286. https://doi.org/10.1029/2022JE007286.

  8. Bertaux, J.-L., Khatuntsev, I.V., Hauchecorne, A., et al., Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves, J. Geophys. Res.: Planets, 2016, vol. 121, pp. 1087–1101. https://doi.org/10.1002/2015JE004958

    Article  ADS  Google Scholar 

  9. Borkov, Y.G., Solodov, A.M., Solodov, A.A., and Perevalov, V.I., Line intensities of the 01111-00001 magnetic dipole absorption band of 12C16O2: Laboratory measurements, J. Mol. Spectrosc., 2021, vol. 376, p. 111418. https://doi.org/10.1016/j.jms.2021.111418

    Article  CAS  Google Scholar 

  10. Braude, A.S., Montmessin, F., Olsen, K.S., et al., No detection of SO2, H2S, or OCS in the atmosphere of Mars from the first two Martian years of observations from TGO/ACS, Astron. Astrophys., 2022, vol. 658, p. A86. https://doi.org/10.1051/0004-6361/202142390

    Article  CAS  Google Scholar 

  11. Brown, Z.L., Medvedev, A.S., Starichenko, E.D., et al., Evidence for gravity waves in the thermosphere of Saturn and implications for global circulation, Geophys. Res. Lett., 2022, vol. 49, p. e97219. https://doi.org/10.1029/2021GL097219

    Article  ADS  Google Scholar 

  12. Chaffin, M.S., Chaufray, J.-Y., Stewart, I., et al., Unexpected variability of Martian hydrogen escape, Geophys. Res. Lett., 2014, vol. 41, pp. 314–320. https://doi.org/10.1002/2013GL058578

    Article  ADS  CAS  Google Scholar 

  13. Chaffin, M.S., Kass, D.M., Aoki, S., et al., Martian water loss to space enhanced by regional dust storms, Nat. Astron., 2021, vol. 5, pp. 1036–1042. https://doi.org/10.1038/s41550-021-01425-w

    Article  ADS  Google Scholar 

  14. Chistikov, D.N., Magnetic dipole and quadrupole transitions in the v2 + v3 vibrational band of carbon dioxide, J. Chem. Phys., 2023, vol. 158, p. 134307. https://doi.org/10.1063/5.0144201

    Article  PubMed  ADS  CAS  Google Scholar 

  15. Daerden, F., Neary, L., Viscardy, S., et al., Mars atmospheric chemistry simulations with the GEM-Mars general circulation model, Icarus, 2019, vol. 326, pp. 197–224. https://doi.org/10.1016/j.icarus.2019.02.030

    Article  ADS  CAS  Google Scholar 

  16. Deichuli, V.M., Petrova, T.M., Solodov, A.M., et al., Water vapor absorption line parameters in the 6760–7430 cm-1 region for application to CO2-rich planetary atmosphere, J. Quant. Spectrosc. Rad. Transfer, 2022, vol. 293, p. 108386. https://doi.org/10.1016/j.jqsrt.2022.108386

    Article  CAS  Google Scholar 

  17. Evdokimova, D., Belyaev, D., Montmessin, F., et al., Improved calibrations of the stellar occultation data accumulated by the SPICAV UV onboard Venus express, Planet. Space Sci., 2020, vol. 184, p. 104868. https://doi.org/10.1016/j.pss.2020.104868

    Article  CAS  Google Scholar 

  18. Evdokimova, D., Belyaev, D., Montmessin, F., et al., The spatial and temporal distribution of nighttime ozone and sulfur dioxide in the Venus mesosphere as deduced from SPICAV UV stellar occultations, J. Geophys. Res.: Planets, 2021, vol. 126, p. e06625. https://doi.org/10.1029/2020JE006625

    Article  CAS  Google Scholar 

  19. ExoMars trace gas orbiter: One Martian year of science. Topical collection, J. Geophys. Res.: Planets, 2023. https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/ (ISSN)2169-9100.ExoMarsTGO1.

  20. Fan, S., Guerlet, S., Forget, F., et al., Thermal tides in the Martian atmosphere near northern summer solstice observed by ACS/TIRVIM onboard TGO, Geophys. Res. Lett., 2022, vol. 49, p.e97130. https://doi.org/10.1029/2021GL097130

    Article  ADS  Google Scholar 

  21. Fedorova, A.A., Montmessin, F., Korablev, O., et al., Stormy water on Mars: the distribution and saturation of atmospheric water during the dusty season, Science, 2020, vol. 367, pp. 297–300. https://doi.org/10.1126/science.aay9522

    Article  PubMed  ADS  CAS  Google Scholar 

  22. Fedorova, A., Montmessin, F., Korablev, O., et al., Multi-annual monitoring of the water vapor vertical distribution on Mars by SPICAM on Mars express, J. Geophys. Res.: Planets, 2021, vol. 126, p. e06616. https://doi.org/10.1029/2020JE006616

    Article  CAS  Google Scholar 

  23. Fedorova, A., Trokhimovskiy, A., Lefèvre, F., et al., Climatology of the co vertical distribution on Mars based on ACS TGO measurements, J. Geophys. Res.: Planets, 2022, vol. 127, p. e07195. https://doi.org/10.1029/2022JE007195

    Article  Google Scholar 

  24. Fedorova, A., Montmessin, F., Trokhimovskiy, A., et al., A two-Martian years survey of the water vapor saturation state on Mars based on ACS NIR/TGO occultations, J. Geophys. Res.: Planets, 2023, vol. 128, p. e2022JE007348. https://doi.org/10.1029/2022JE007348

  25. Fleurbaey, H., Grilli, R., Mondelain, D., Kassi, S., Yachmenev, A., Yurchenko, S.N., and Campargue, A., Electric-quadrupole and magnetic-dipole contributions to the v2+ v3 band of carbon dioxide near 3.3 μm, J. Quant. Spectrosc. Rad. Transfer, 2021, vol. 266. https://doi.org/10.1016/j.jqsrt.2021.107558

  26. Forget, F., Korablev, O., Venturini, J., et al., Editorial: Topical collection on understanding the diversity of planetary atmospheres, Space Sci. Rev., 2021, vol. 217, p. 51. https://doi.org/10.1007/s11214-021-00820-z

    Article  ADS  Google Scholar 

  27. Gamache, R.R., Vispoel, B., Rey, M., et al., Partition sums for non-local thermodynamic equilibrium conditions for nine molecules of importance in planetary atmospheres, Icarus, 2022, vol. 378, p. 114947. https://doi.org/10.1016/j.icarus.2022.114947

    Article  CAS  Google Scholar 

  28. Gordon, I.E., Rothman, L.S., Hargreaves, R.J., et al., The hitran2020 molecular spectroscopic database, J. Quant. Spectrosc. Rad. Transfer, 2022, vol. 277, p. 107949. https://doi.org/10.1016/j.jqsrt.2021.107949

    Article  CAS  Google Scholar 

  29. Gorinov, D.A., Zasova, L.V., Khatuntsev, I.V., et al., Winds in the lower cloud level on the nightside of Venus from VIRTIS-M (Venus Express) 1.74 μm images, Atmosphere, 2021, vol. 12, p. 186. https://doi.org/10.3390/atmos12020186

    Article  ADS  Google Scholar 

  30. Gubenko, V.N., Kirillovich, I.A., Gubenko, D.V., Andreev, V.E., and Gubenko, T.V., Activity of small-scale internal waves in the northern polar atmosphere of Venus by radio occultation measurements of signal intensity (Λ = 32 cm) from Venera-15 and -16 satellites, Sol. Syst. Res., 2021, vol. 55, no. 1, pp. 1–10.

    Article  ADS  Google Scholar 

  31. Guerlet, S., Ignatiev, N., Forget, F., et al., Thermal structure and aerosols in Mars’ atmosphere from TIRVI-M/ACS onboard the ExoMars trace gas orbiter: Validation of the retrieval algorithm, J. Geophys. Res.: Planets, 2022, vol. 127, p. e07062. https://doi.org/10.1029/2021JE007062

    Article  Google Scholar 

  32. Guzewich, S.D., Fedorova, A.A., Kahre, M.A., and Toig-o, A.D., Studies of the 2018/Mars year 34 planet-encircling dust storm, J. Geophys. Res.: Planets, 2020, vol. 125, p. e06700. https://doi.org/10.1029/2020JE006700

    Article  Google Scholar 

  33. Holmes, J.A., Lewis, S.R., Patel, M.R., et al., Enhanced water loss from the Martian atmosphere during a regional-scale dust storm and implications for long-term water loss, Earth Planet. Sci. Lett., 2021, vol. 571, p. 117109. https://doi.org/10.1016/j.epsl.2021.117109

    Article  CAS  Google Scholar 

  34. Holmes, J.A., Lewis, S.R., Patel, M.R., et al., Global variations in water vapor and saturation state throughout the Mars Year 34 dusty season, J. Geophys. Res.: Planets, 2022, vol. 127, p. e2022JE007203. https://doi.org/10.1029/2022JE007203

  35. Imamura, T., Mitchell, J., Lebonnois, S., et al., Superrotation in planetary atmospheres, Space Sci. Rev., 2020, vol. 216, p. 87. https://doi.org/10.1007/s11214-020-00703-9

    Article  ADS  Google Scholar 

  36. Izvekova, Yu.N., Popel’, S.I., and Izvekov, O.Ya., On the question of calculating the parameters of vortices in the near-surface atmosphere of Mars, Sol. Syst. Res., 2019, vol. 53, no. 6, pp. 423–430. https://doi.org/10.1134/S0038094619050058

    Article  ADS  Google Scholar 

  37. Karlovets, E.V., Gordon, I.E., Rothman, L.S., et al., The update of the line positions and intensities in the line list of carbon dioxide for the HITRAN2020 spectroscopic database, J. Quant. Spectrosc. Rad. Transfer, 2021, vol. 276, p. 107896. https://doi.org/10.1016/j.jqsrt.2021.107896

    Article  CAS  Google Scholar 

  38. Karman, T., Gordon, I.E., van der Avoird, A., et al., Update of the HITRAN collision-induced absorption section, Icarus, 2019, vol. 328, pp. 160–175.https://doi.org/10.1016/j.icarus.2019.02.034

    Article  ADS  CAS  Google Scholar 

  39. Kazakov, K.V. and Vigasin, A.A., Vibrational magnetism and the strength of magnetic dipole transition within the electric dipole forbidden v2 + v3 absorption band of carbon dioxide, Mol. Phys., 2021, vol. 119, p. e1934581. https://doi.org/10.1080/00268976.2021.1934581

    Article  ADS  CAS  Google Scholar 

  40. Khatuntsev, I.V., Patsaeva, M.V., Titov, D.V., et al., Cloud level winds from the Venus express monitoring camera imaging, Icarus, 2013, vol. 226, pp. 140–158. https://doi.org/10.1016/j.icarus.2013.05.018

    Article  ADS  Google Scholar 

  41. Khatuntsev, I.V., Patsaeva, M.V., Titov, D.V., et al., Winds in the middle cloud deck from the near-IR imaging by the Venus monitoring camera onboard Venus Express, J. Geophys. Res.: Planets, 2017, vol. 122, pp. 2312–2327. https://doi.org/10.1002/2017JE005355

    Article  ADS  Google Scholar 

  42. Khatuntsev, I.V., Patsaeva, M.V., Zasova, L.V., et al., Winds from the visible (513 nm) images obtained by the Venus monitoring camera onboard Venus express, J. Geophys. Res.: Planets, 2022a, vol. 127, p. e07032. https://doi.org/10.1029/2021JE007032

    Article  Google Scholar 

  43. Khatuntsev, I.V., Patsaeva, M.V., Titov, D.V., et al., Twelve-year cycle in the cloud top winds derived from VMC/Venus express and UVI/Akatsuki Imaging, Atmosphere, 2022b, vol. 13, p. 2023. https://doi.org/10.3390/atmos13122023

    Article  ADS  Google Scholar 

  44. Knutsen, E.W., Villanueva, G.L., Liuzzi, G., et al., Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD, Icarus, 2021, vol. 357, p. 114266. https://doi.org/10.1016/j.icarus.2020.114266

    Article  CAS  Google Scholar 

  45. Knutsen, E.W., Montmessin, F., Verdier, L., et al., Water vapor on Mars: A refined climatology and constraints on the near-surface concentration enabled by synergistic retrievals, J. Geophys. Res.: Planets, 2022, vol. 127, p. e07252. https://doi.org/10.1029/2022JE007252

    Article  Google Scholar 

  46. Korablev, O.I., Studies of planetary atmospheres in Russia (2011–2014), Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 5, pp. 483–496. https://doi.org/10.1134/S0001433816050066

    Article  Google Scholar 

  47. Korablev, O.I., Studies of planetary atmospheres in Russia (2015–2018), Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 2, pp. 130–140. https://doi.org/10.1134/S0001433820020061

    Article  Google Scholar 

  48. Korablev, O.I., Trace species in planetary atmospheres: Some results of TGO ExoMars, Astron. Astrophys. Trans., 2021, vol. 32, pp. 289–304.

    Article  ADS  Google Scholar 

  49. Korablev, O., Montmessin, F., Trokhimovskiy, A., et al., The atmospheric chemistry suite (ACS) of three spectrometers for the ExoMars 2016 trace gas orbiter, Space Sci. Rev., 2018, vol. 214, p. 7. https://doi.org/10.1007/s11214-017-0437-6

    Article  ADS  CAS  Google Scholar 

  50. Korablev, O., Vandaele, A.C., Montmessin, F., et al., No detection of methane on Mars from early ExoMars trace gas orbiter observations, Nature, 2019, vol. 568, pp. 517–520. https://doi.org/10.1038/s41586-019-1096-4

    Article  PubMed  ADS  CAS  Google Scholar 

  51. Korablev, O., Olsen, K.S., Trokhimovskiy, A., et al., Transient HCl in the atmosphere of Mars, Sci. Adv., 2021, vol. 7, p. eabe4386. https://doi.org/10.1126/sciadv.abe4386

  52. Krasnopolsky, V.A., Photochemistry of water in the Martian thermosphere and its effect on hydrogen escape, Icarus, 2019, vol. 321, pp. 62–70, pp. 62–70. https://doi.org/10.1016/j.icarus.2018.10.033

  53. Krasnopolsky, V.A., A photochemical model of Pluto’s atmosphere and ionosphere, Icarus, 2020a, vol. 335, p. 113374. https://doi.org/10.1016/j.icarus.2019.07.008

    Article  CAS  Google Scholar 

  54. Krasnopolsky, V.A., On the methylacetylene abundance and nitrogen isotope ratio in Pluto’s atmosphere, Planet. Space Sci., 2020b, vol. 192, p. 105044. https://doi.org/10.1016/j.pss.2020.105044

    Article  CAS  Google Scholar 

  55. Krasnopolsky, V.A., Seasonal and latitudinal variations of the hdo/h2o ratio in the Martian atmosphere, Planet. Space Sci., 2021, vol. 208, p. 105345. https://doi.org/10.1016/j.pss.2021.105345

    Article  CAS  Google Scholar 

  56. Krasnopolsky, V.A., Photochemistry of HCl in the Martian atmosphere, Icarus, 2022, vol. 374, p. 114807. https://doi.org/10.1016/j.icarus.2021.114807

    Article  CAS  Google Scholar 

  57. Kurgansky, M.V., On the statistical distribution of pressure drops in convective vortices: applications to Martian dust devils, Icarus, 2019, vol. 317, pp. 209–214. https://doi.org/10.1016/j.icarus.2018.08.004

    Article  ADS  Google Scholar 

  58. Kurgansky M.V. On determination of the size-frequency distribution of convective vortices in pressure time-series surveys on Mars, Icarus, 2020, vol. 335, p. 113389. https://doi.org/10.1016/j.icarus.2019.113389

    Article  Google Scholar 

  59. Kurgansky, M.V., An estimate of convective vortex activity at the insight landing site on Mars, Icarus, 2021, vol. 358, p. 114200. https://doi.org/10.1016/j.icarus.2020.114200

    Article  Google Scholar 

  60. Kurgansky, M.V., Statistical distribution of atmospheric dust devils on earth and Mars, Boundary-Layer Meteorol., 2022, vol. 184, pp. 381–400. https://doi.org/10.1007/s10546-022-00713-w

    Article  ADS  Google Scholar 

  61. Lebonnois, S., Hourdin, F., Eymet, V., et al., Superrotation of Venus’ atmosphere analyzed with a full general circulation model, J. Geophys. Res.: Planets, 2010, vol. 115, p. E06006. https://doi.org/10.1029/2009JE003458

    Article  ADS  Google Scholar 

  62. Lefèvre, F., Trokhimovskiy, A., Fedorova, A., et al., Relationship between the ozone and water vapor columns on Mars as observed by SPICAM and calculated by a global climate model, J. Geophys. Res.: Planets, 2021, vol. 126, p. e06838. https://doi.org/10.1029/2021JE006838

    Article  CAS  Google Scholar 

  63. Limaye, S.S., Zelenyi, L., and Zasova, L., Introducing the Venus collection-papers from the first workshop on habitability of the cloud layer, Astrobiology, 2021, vol. 21, pp. 1157–1162. https://doi.org/10.1089/ast.2021.0142

    Article  PubMed  ADS  Google Scholar 

  64. Luginin, M., Fedorova, A., Ignatiev, N., et al., Properties of water ice and dust particles in the atmosphere of Mars during the 2018 global dust storm as inferred from the atmospheric chemistry suite, J. Geophys. Res.: Planets, 2020, vol. 125, p. e06419. https://doi.org/10.1029/2020JE006419

    Article  CAS  Google Scholar 

  65. Luo, Y., Mischna, M.A., Lin, J.C., et al., Mars methane sources in northwestern gale crater inferred from back trajectory modeling, Earth Space Sci., 2021, vol. 8, p. e01915. https://doi.org/10.1029/2021EA001915

    Article  Google Scholar 

  66. Määttänen, A., Lefèvre, F., Verdier, L., et al., Ozone vertical distribution in Mars years 27–30 from SPICAM/MEX UV occultations, Icarus, 2022, vol. 387, p. 115162. https://doi.org/10.1016/j.icarus.2022.115162

    Article  CAS  Google Scholar 

  67. Marcq, E., Baggio, L., Lefèvre, F., et al., Discovery of cloud top ozone on Venus, Icarus, 2019, vol. 319, pp. 491–498. https://doi.org/10.1016/j.icarus.2018.10.006

    Article  ADS  CAS  Google Scholar 

  68. Marcq, E., Lea Jessup, K., Baggio, L., et al., Climatology of SO2 and UV absorber at Venus’ cloud top from SPIC-AV-UV nadir dataset, Icarus, 2020, vol. 335, p. 113368. https://doi.org/10.1016/j.icarus.2019.07.002

    Article  CAS  Google Scholar 

  69. Mingalev, I.V., Rodin, A.V., and Orlov, K.G., Numerical modeling of the general circulation of the atmosphere of Titan at equinox, Sol. Syst. Res., 2019, vol. 53, no. 4, pp. 278–293. https://doi.org/10.1134/S0038094619040051

    Article  ADS  CAS  Google Scholar 

  70. Montmessin, F., Fouchet, T., and Forget, F., Modeling the annual cycle of hdo in the Martian atmosphere, J. Geophys. Res., 2005, vol. 110, p. E10004. https://doi.org/10.1029/2004JE002357

    Article  CAS  Google Scholar 

  71. Montmessin, F., Bertaux, J.-L., Lefèvre, F., et al., A layer of ozone detected in the nightside upper atmosphere of Venus, Icarus, 2011, vol. 216, pp. 82–85. https://doi.org/10.1016/j.icarus.2011.08.010

    Article  ADS  CAS  Google Scholar 

  72. Montmessin, F., Korablev, O.I., Trokhimovskiy, A., et al., A stringent upper limit of 20 pptv for methane on Mars and constraints on its dispersion outside gale crater, Astron. Astrophys., 2021, vol. 650, p. A140. https://doi.org/10.1051/0004-6361/202140389

    Article  CAS  Google Scholar 

  73. Montmessin, F., Belyaev, D.A., Lefèvre, F., et al., Reappraising the production and transfer of hydrogen atoms from the middle to the upper atmosphere of Mars at times of elevated water vapor, J. Geophys. Res.: Planets, 2022, vol. 127, p. e07217. https://doi.org/10.1029/2022JE007217

    Article  Google Scholar 

  74. Moores, J.E., King, P.L., Smith, C.L., et al., The methane diurnal variation and microseepage flux at gale crater, Mars as constrained by the ExoMars trace gas orbiter and curiosity observations, Geophys. Res. Lett., 2019, vol. 46, pp. 9430–9438. https://doi.org/10.1029/2019GL083800

    Article  ADS  Google Scholar 

  75. Mumma, M.J., Villanueva, G.L., Novak, R.E., et al., Strong release of methane on Mars in northern summer 2003, Science, 2009, vol. 323, pp. 1041–1045. https://doi.org/10.1126/science.1165243

    Article  PubMed  ADS  CAS  Google Scholar 

  76. Olsen, K.S., Lefèvre, F., Montmessin, F., et al., First detection of ozone in the mid-infrared at Mars: implications for methane detection, Astron. Astrophys., 2020, vol. 639, p. A141. https://doi.org/10.1051/0004-6361/202038125

    Article  CAS  Google Scholar 

  77. Olsen, K.S., Lefèvre, F., Montmessin, F., et al., The vertical structure of co in the Martian atmosphere from the ExoMars trace gas orbiter, Nat. Geosci., 2021a, vol. 14, pp. 67–71. https://doi.org/10.1038/s41561-020-00678-w

    Article  ADS  CAS  Google Scholar 

  78. Olsen, K.S., Trokhimovskiy, A., Montabone, L., et al., Seasonal reappearance of hcl in the atmosphere of Mars during the Mars year 35 dusty season, Astron. Astrophys., 2021b, vol. 647, p. A161. https://doi.org/10.1051/0004-6361/202140329

    Article  CAS  Google Scholar 

  79. Olsen, K.S., Trokhimovskiy, A., Braude, A.S., et al., Upper limits for phosphine (ph3) in the atmosphere of Mars, Astron. Astrophys., 2021c, vol. 649, p. L1. https://doi.org/10.1051/0004-6361/202140868

    Article  ADS  CAS  Google Scholar 

  80. Olsen, K.S., Fedorova, A.A., Trokhimovskiy, A., et al., Seasonal changes in the vertical structure of ozone in the Martian lower atmosphere and its relationship to water vapor, J. Geophys. Res.: Planets, 2022, vol. 127, p. e2022JE007213. https://doi.org/10.1029/2022JE007213.

  81. Patsaeva, M.V., Khatuntsev, I.V., Zasova, L.V., et al., Solar-related variations of the cloud top circulation above Aphrodite Terra from VMC/Venus Express wind fields, J. Geophys. Res.: Planets, 2019, vol. 124, pp. 1864–1879. https://doi.org/10.1029/2018JE005620

    Article  ADS  Google Scholar 

  82. Perevalov, V.I., Trokhimovskiy, A.Y., Lukashevskaya, A.A., et al., Magnetic dipole and electric quadrupole absorption in carbon dioxide, J. Quant. Spectrosc. Rad. Transfer, 2021, vol. 259, p. 107408. https://doi.org/10.1016/j.jqsrt.2020.107408

    Article  CAS  Google Scholar 

  83. Pinto, J.P., Li, J., Mills, F.P., Marcq, E., Evdokimova, D., Belyaev, D., and Yung, Y.L., Sulfur monoxide dimer chemistry as a possible source of polysulfur in the upper atmosphere of Venus, Nat. Commun., 2021, vol. 12, p. 175. https://doi.org/10.1038/s41467-020-20451-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Rajendran, K., Lewis, S.R., Holmes, J.A., et al., Enhanced super-rotation before and during the 2018 Martian global dust storm, Geophys. Res. Lett., 2021, vol. 48, p. e94634. https://doi.org/10.1029/2021GL094634

    Article  ADS  Google Scholar 

  85. Rossi, L., Vals, M., Montmessin, F., et al., The effect of the Martian 2018 global dust storm on HDO as predicted by a Mars global climate model, Geophys. Res. Lett., 2021, vol. 48, p. e90962. https://doi.org/10.1029/2020GL090962

    Article  ADS  Google Scholar 

  86. Rossi, L., Vals, M., Alday, J., et al., The HDO cycle on Mars: comparison of ACS observations with GCM simulations, J. Geophys. Res.: Planets, 2022, vol. 127, p. e07201. https://doi.org/10.1029/2022JE007201

    Article  Google Scholar 

  87. Russian National Report: Meteorology and Atmospheric Sciences (2019–2022) for the XXVIII General Assembly of the International Union of Geodesy and Geophysics (Berlin, Germany, July 11–20, 2023), Mokhov, I.I. and Krivolutsky, A.A., Eds., Moscow, MAKS Press, 2023. https://doi.org/10.29003/m3460.978-5-317-07017-5.

  88. Shaposhnikov, D.S., Medvedev, A.S., Rodin, A.V., and Hartogh, P., Seasonal water “pump” in the atmosphere of Mars: Vertical transport to the thermosphere, Geophys. Res. Lett., 2019, vol. 46, pp. 4161–4169. https://doi.org/10.1029/2019GL082839

    Article  ADS  CAS  Google Scholar 

  89. Shaposhnikov, D.S., Medvedev, A.S., and Rodin, A.V., Simulation of water vapor photodissociation during dust storm season on Mars, Sol. Syst. Res., 2022a, vol. 56, no. 1, pp. 23–31. https://doi.org/10.1134/S0038094622010051

    Article  ADS  CAS  Google Scholar 

  90. Shaposhnikov, D.S., Medvedev, A.S., Rodin, A.V., et al., Martian dust storms and gravity waves: Disentangling water transport to the upper atmosphere, J. Geophys. Res.: Planets, 2022b, vol. 127, p. e07102. https://doi.org/10.1029/2021JE007102

    Article  Google Scholar 

  91. Shematovich, V.I., Atmospheric loss of atomic oxygen during proton aurorae on Mars, Sol. Syst. Res., 2021, vol. 55, no. 4, pp. 324–334. https://doi.org/10.1134/S0038094621040079

    Article  ADS  CAS  Google Scholar 

  92. Shematovich, V.I. and Kalinicheva, E.S., Oxygen atom escape from the Martian atmosphere during proton auroral events, Astron. Rep., 2020, vol. 97, no. 7, pp. 628–635. https://doi.org/10.1134/S1063772920080089

    Article  ADS  Google Scholar 

  93. Shematovich, V.I., Bisikalo, D.V., Gérard, J.-C., Hubert, B., Kinetic Monte Carlo model for the precipitation of high-energy protons and hydrogen atoms into the atmosphere of Mars with taking into account the measured magnetic field, Astron. Rep., 2019, vol. 63, no. 10, pp. 835–845. https://doi.org/10.1134/S1063772919100056

    Article  ADS  CAS  Google Scholar 

  94. Shematovich, V.I., Bisikalo, D.V., and Zhilkin, A.G., Effect of variations in the extended hydrogen corona of mars on the efficiency of charge exchange with solar wind protons, Astron. Rep., 2021, vol. 98, no. 3, pp. 203–208. https://doi.org/10.1134/S1063772921030033

    Article  ADS  Google Scholar 

  95. Starichenko, E.D., Belyaev, D.A., Medvedev, A.S., et al., Gravity wave activity in the Martian atmosphere at altitudes 20–160 km from ACS/TGO occultation measurements, J. Geophys. Res.: Planets, 2021, vol. 126, p. e06899. https://doi.org/10.1029/2021JE006899

    Article  Google Scholar 

  96. Stcherbinine, A., Vincendon, M., Montmessin, F., et al., Martian water ice clouds during the 2018 global dust storm as observed by the ACS-MIR channel onboard the Trace Gas Orbiter, J. Geophys. Res.: Planets, 2020, vol. 125, p. e06300. https://doi.org/10.1029/2019JE006300

    Article  Google Scholar 

  97. Stcherbinine, A., Montmessin, F., Vincendon, M., et al., A two Martian years survey of water ice clouds on Mars with ACS onboard TGO, J. Geophys. Res.: Planets, 2022, vol. 127, p. e2022JE007502. https://doi.org/10.1029/2022JE007502

  98. Streeter, P.M., Lewis, S.R., Patel, M.R., et al., Asymmetric impacts on Mars’ polar vortices from an equinoctial global dust storm, J. Geophys. Res.: Planets, 2021, vol. 126, p. e06774. https://doi.org/10.1029/2020JE006774

    Article  Google Scholar 

  99. Trokhimovskiy, A., Perevalov, V., Korablev, O., et al., First observation of the magnetic dipole CO2 absorption band at 3.3 μm in the atmosphere of Mars by the ExoMars Trace Gas Orbiter ACS instrument, Astron. Astrophys., 2020, vol. 639, p. A142. https://doi.org/10.1051/0004-6361/202038134

    Article  CAS  Google Scholar 

  100. Trokhimovskiy, A., Fedorova, A.A., Olsen, K.S., et al., Isotopes of chlorine from HCl in the Martian atmosphere, Astron. Astrophys., 2021, vol. 651, p. A32. https://doi.org/10.1051/0004-6361/202140916

    Article  CAS  Google Scholar 

  101. Vals, M., Rossi, L., Montmessin, F., et al., Improved modeling of Mars’ HDO cycle using a Mars’ global climate model, J. Geophys. Res.: Planets, 2022, vol. 127, p. e07192. https://doi.org/10.1029/2022JE007192

    Article  Google Scholar 

  102. Vandaele, A.C., Korablev, O., Daerden, F., et al., Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter, Nature, 2019, vol. 568, pp. 521–525. https://doi.org/10.1038/s41586-019-1097-3

    Article  PubMed  ADS  CAS  Google Scholar 

  103. Vlasov, P., Ignatiev, N., Guerlet, S., et al., Martian atmospheric thermal structure and dust distribution during the MY 34 global dust storm from ACS TIRVIM nadir observations, J. Geophys. Res.: Planets, 2022, vol. 127, p. e07272. https://doi.org/10.1029/2022JE007272

    Article  Google Scholar 

  104. Webster, C.R., Mahaffy, P.R., Atreya, S.K., et al., Background levels of methane in Mars’ atmosphere show strong seasonal variations, Science, 2018, vol. 360, pp. 1093–1096. https://doi.org/10.1126/science.aaq0131

    Article  MathSciNet  PubMed  ADS  CAS  Google Scholar 

  105. Webster, C.R., Mahaffy, P.R., Pla-Garcia, J., et al., Day–night differences in Mars methane suggest nighttime containment at gale crater, Astron. Astrophys., 2021, vol. 650, p. A166. https://doi.org/10.1051/0004-6361/202040030

    Article  CAS  Google Scholar 

  106. Yachmenev, A., Campargue, A., Yurchenko, S.N., et al., Electric quadrupole transitions in carbon dioxide, J. Chem. Phys., 2021, vol. 154, p. 211104. https://doi.org/10.1063/5.0053279

    Article  PubMed  ADS  CAS  Google Scholar 

  107. Young, R.M.B., Millour, E., Guerlet, S., et al., Assimilation of temperatures and column dust opacities measured by ExoMars TGO-ACS-TIRVIM during the MY34 global dust storm, J. Geophys. Res.: Planets, 2022, vol. 127, p. e07312. https://doi.org/10.1029/2022JE007312

    Article  Google Scholar 

  108. Zasova, L.V., Gorinov, D.A., Eismont, N.A., et al., Venera-D: A design of an automatic space station for Venus exploration, Sol. Syst. Res., 2020, vol. 53, p. 506. https://doi.org/10.1134/S0038094619070244

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Korablev.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korablev, O.I. Russian Studies of Planetary Atmospheres in 2019–2022. Izv. Atmos. Ocean. Phys. 59 (Suppl 3), S363–S382 (2023). https://doi.org/10.1134/S0001433823150057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823150057

Keywords:

Navigation