Skip to main content
Log in

Russian Research in the Field of Polar Meteorology in 2019–2022

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This publication is an overview of the results of Russian polar research in 2019–2022, prepared in the Commission on Polar Meteorology of the National Geophysical Committee for the National Report on Meteorology and Atmospheric Sciences for the 28th General Assembly of the International Union of Geodesy and Geophysics (Berlin, Germany, July 11–20, 2023).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Akperov, M.G., Mokhov, I.I., Dembitskaya, M.A., Parfenova, M.R., and Rinke, A., Lapse rate peculiarities in the Arctic from reanalysis data and model simulations, Russ. Meteorol. Hydrol., 2019a, vol. 44, no. 2, pp. 97–102.

    Article  Google Scholar 

  2. Akperov, M.G., Semenov, V.A., Mokhov, I.I., Parfenova, M.R., Dembitskaya, M.A., Bokuchava, D.D., Rinke, A., and Dorn, V., Influence of oceanic heat influx into the Barents Sea on regional changes in ice cover and static stability of the atmosphere, Led Sneg, 2019b, vol. 59, no. 4, pp. 529–538.

    Google Scholar 

  3. Akperov, M., Rinke, A., Mokhov, I.I., Semenov, V.A., Parfenova, M.R., Matthes, H., Adakudlu, M., Boberg, F., Christensen, J.H., Dembitskaya, M.A., Dethloff, K., Fettweis, X., Gutjahr, O., Heinemann, G., Koenigk, T., et al., Future projections of cyclone activity in the arctic for the 21st century from regional climate models (Arctic-CORDEX), Global Planet. Change, 2019c, vol. 182, p. 103005.

    Article  Google Scholar 

  4. Akperov, M., Semenov, V.A., Mokhov, I.I., Dorn, W., and Rinke, A., Impact of Atlantic water inflow on winter cyclone activity in the Barents Sea: Insights from coupled regional climate model simulations, Environ. Res. Lett., 2020, vol. 15, no. 2, p. 024009.

    Article  ADS  Google Scholar 

  5. Akperov, M., Zhang, W., Miller, P.A., Mokhov, I.I., Semenov, V.A., Matthes, H., Smith, B., and Rinke, A., Responses of arctic cyclones to biogeophysical feedbacks under future warming scenarios in a regional earth system model, Environ. Res., Lett., 2021, vol. 16, no. 6, p. 064076.

    Article  ADS  Google Scholar 

  6. Akperov, M.G., Eliseev, A.V., Mokhov, I.I., Semenov, V.A., and Parfenova, M.R., Wind energy potential in the Arctic and subarctic regions and its projected change in the 21st century based on regional climate model simulations, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 6, pp. 428–436.

    Article  Google Scholar 

  7. Arzhanov, M.M., Malakhova, V.V., and Mokhov, I.I., Modeling thermal regime and evolution of the methane hydrates stability zone of the Yamal Peninsula permafrost, Permafrost Periglacial Processes, 2020, vol. 31, no. 4, pp. 487–496.

    Article  Google Scholar 

  8. Chechin, D., Makhotina, I., Lupkes, C., and Makshtas, A., Effect of wind speed and leads on clear-sky cooling over arctic sea ice during polar night, J. Atmos. Sci., 2019, vol. 76, no. 8, pp. 2481–2503.

    Article  ADS  Google Scholar 

  9. Dahlke, S., Hughes, N.E., Wagner, P.M., Gerland, S., Wawrzyniak, T., Ivanov, B.V., and Maturilli, M., The observed recent surface air temperature development across Svalbard and concurring footprints in local sea ice cover, Int. J. Climatol., 2020, vol. 40, pp. 5246–5265.

    Article  Google Scholar 

  10. Demchev, D.M., Kulakov, M.Yu., Makshtas, A.P., Makhotina, I.A., Fil’chuk, K.V., and Frolov, I.E., Verification of ERA-Interim and ERA5 reanalyses data on surface air temperature in the Arctic, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 11, pp. 771–777.

    Article  Google Scholar 

  11. Ekaikin, A.A., Teben’kova, N.A., Lipenkov, V.Ya., Chikhachev, K.B., Veres, A.N., Richter, A., Underestimation of snow accumulation rate in Central Antarctica (Vostok station) derived from stake measurements, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 2, pp. 132–140.

    Article  Google Scholar 

  12. Ekaikin, A.A., Chikhachev, K.B., Veres, A.N., Lipenkov, V.Ya., Teben’kova, N.A., and Turkeev, A.V., Density profile of snow-firn strata in the region of Vostok station in Central Antarctica, Led Sneg, 2022, vol. 62, no. 4, pp. 504–511.

    Google Scholar 

  13. Golobokova, L.P., Khodzher, T.V., Izosimova, O.N., Zenkova, P.N., Pochyufarov, A.O., Khuriganowa, O.I., Onishyuk, N.A., Marinayte, I.I., Polkin, V.V., Radionov, V.F., Sakerin, S.M., Lisitzin, A.P., and Shevchenko, V.P., Chemical composition of atmospheric aerosol in the arctic region and adjoining seas along the routes of marine expeditions in 2018–2019, Atmos. Oceanic Opt., 2020a, vol. 33, no. 5, pp. 480–489.

    Article  ADS  CAS  Google Scholar 

  14. Golobokova, L.P., Khodzher, T.V., Chernov, D.G., Sidorova, O.R., Khuriganova, O.I., Onishchuk, N.A., Zhuchenko, N.A., and Marinaite, I.I., Chemical composition of surface atmospheric aerosol in Barentsburg (Spitsbergen archipelago) from long-term research data, Led Sneg, 2020b, vol. 60, no. 1, pp. 85–97.

    Google Scholar 

  15. Heinemann, G., Willmes, S., Schefczyk, L., Makshtas, A., Kustov, V., and Makhotina, I., Observations and simulations of meteorological conditions over Arctic thick sea ice in late winter during the Transarktika 2019 expedition, Atmosphere, 2021a, vol. 12, p. 174.

    Article  ADS  Google Scholar 

  16. Heinemann, G., Drüe, C., Schwarz, P., and Makshtas, A., Observations of wintertime low-level jets in the coastal region of the Laptev Sea in the Siberian Arctic using SODAR/RASS, Remote Sens., 2021b, vol. 13, p. 1421.

    Article  ADS  Google Scholar 

  17. Heinemann, G., Drüe, C., and Makshtas, A.A., Three-year climatology of the wind field structure at Cape Baranova (Severnaya Zemlya, Siberia) from SODAR observations and high-resolution regional climate model simulations during YOPP, Atmosphere, 2022, vol. 13, p. 957.

    Article  ADS  Google Scholar 

  18. Isaksen, K., Nordli, Ø., Ivanov, B., et al., Exceptional warming over the Barents area, Sci. Rep., 2022, vol. 12, p. 9371.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ivanov, B.V., Comparing the “earlier” and the “modern” warming in West Arctic on example of Svalbard, IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 231, no. 012023.

  20. Ivanov, B., Karandasheva, T., Demin, V., Revina, A., Sviashchennikov, P., Isaksen, K., Forland, E.J., Nordli, Ø., and Gjelten, H.M., Assessment of long-term changes surface air temperature from the High Arctic archipelago Franz Joseph Land from 1929 to the present (2017), Czech Pol. Rep., 2021a, vol. 11, no. 1, pp. 114–133.

    Article  Google Scholar 

  21. Ivanov, B., Prokhorova, Y., and Sviashchennikov, P., Analysis of continentality and anomality of Svalbard climate according to observations of surface air temperature in the second half of the xx century, IOP Conf. Ser.: Earth Environ. Sci., 2021b, vol. 606, no. 012021.

  22. Jonassen, M.O., Valisuo, I., Vihma, T., Uotila, P., Makshtas, A.P., and Launiainen, J., Assessment of atmospheric reanalyses with independent observations in the Weddell Sea, the Antarctic, J. Geophys. Res.: Atmos., 2019, vol. 124, no. 23, pp. 12468–12484.

    Article  ADS  Google Scholar 

  23. Juutinen, S., Aurela, M., Tuovinen, J.-P., Ivakhov, V., Linkosalmi, M., Räsänen, A., Virtanen, T., Mikola, J., Nyman, J., Vähä, E., Loskutova, M., Makshtas, A., and Laurila, T., Variation in CO2 and CH4 fluxes among land cover types in heterogeneous arctic tundra in Northeastern Siberia, Biogeosciences, 2022, vol. 19, pp. 3151–3167.

    Article  ADS  CAS  Google Scholar 

  24. Klimat Arktiki: protsessy i izmeneniya (The Arctic Climate: Processes and Changes), Mokhov, I.I. and Semenov, V.A., Eds., Moscow: Fizmatkniga, 2022.

    Google Scholar 

  25. Makhotina, I.A., Makshtas, A.P., and Kustov, V.Yu., Sea ice–atmosphere heat exchange during expedition “Transarctica-2019”, IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 606, no. 012032.

  26. Makhotina, I.A., Chechin, D.G., and Makshtas, A.P., Cloud radiative forcing over sea ice in the Arctic during the polar night according to North Pole-37, -39, and ‑40 drifting stations, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 5, pp. 451–460.

    Article  Google Scholar 

  27. Makshtas, A.P., Il’in, G.N., Bykov, V.Yu., Miller, E.A., Troitskii, A.V., Kustov, V.Yu., Bol’shakova, I.I., and Rize, D.D., History of temperature and humidity remote sensing of the atmosphere during the drift of the Akademik Treshnikov research vessel, Probl. Arkt. Antarkt., 2020, vol. 66, no. 3, pp. 349–363.

    Google Scholar 

  28. Metan i klimaticheskie izmeneniya: nauchnye problemy i tekhnologicheskie aspekty (Methane and Climate Change: Scientific Problems and Technological Aspects), Bondur, V.G., Mokhov, I.I., and Makosko, A.A., Eds., Moscow: RAN, 2022.

    Google Scholar 

  29. Mokhov, I.I., Features of contemporary changes in the Arctic and their consequences, Probl. Arkt. Antarkt., 2020, vol. 66, no. 4, pp. 446–462.

    Google Scholar 

  30. Mokhov, I.I., Analytical conditions for the formation of Arctic amplification in the Earth’s climate system, Dokl. Earth Sci., 2022, vol. 505, no. 1, pp. 496–500.

    Article  ADS  CAS  Google Scholar 

  31. Mokhov, I.I., Malakhova, V.V., and Arzhanov, M.M., Model estimates of intra- and intercentennial degradation of permafrost on the Yamal Peninsula under warming, Dokl. Earth Sci., 2022, vol. 506, no. 2, pp. 782–789.

    Article  ADS  CAS  Google Scholar 

  32. Mokhov, I.I. and Parfenova, M.R., Features of changes in Antarctic and Arctic sea ice in recent decades against the background of global and regional climate changes, Vopr. Geogr., 2020, no. 150, pp. 304–319.

  33. Mokhov, I.I. and Parfenova, M.R., Relationship of the extent of Antarctic and Arctic ice with temperature changes, 1979–2020, Dokl. Earth Sci., 2021a, vol. 496, no. 1, pp. 66–71.

    Article  ADS  CAS  Google Scholar 

  34. Mokhov, I.I. and Parfenova, M.R., Changes in the snow cover extent in Eurasia from satellite data in relation to hemispheric and regional temperature changes, Dokl. Earth Sci., 2021b, vol. 501, no. 1, pp. 963–968.

    Article  ADS  CAS  Google Scholar 

  35. Mokhov, I.I. and Parfenova, M.R., Changes of the sea ice and snow cover extent associated with temperature changes in the northern and southern hemispheres in recent decades, IOP Conf. Ser.: Earth Environ. Sci., 2022a, vol. 1040, no. 012016.

  36. Mokhov, I.I. and Parfenova, M.R., The relationship between snow cover and sea ice extent and temperature changes in the Northern Hemisphere based on data for recent decades, Izv., Atmos. Ocean. Phys., 2022b, vol. 58, no. 4, pp. 353–363.

    Article  Google Scholar 

  37. Mokhov, I.I. and Pogarskii, F.A., Variations in the characteristics of sea waves in the Arctic basin caused by climate changes in the 21st century based on model simulations, Dokl. Earth Sci., 2021, vol. 496, no. 2, pp. 164–167.

    Article  ADS  CAS  Google Scholar 

  38. Parfenova, M.R., Eliseev, A.V., Mokhov, I.I., et al., Changes in the duration of the navigation period in Arctic seas along the Northern Sea Route in the twenty-first century: Bayesian estimates based on calculations with the ensemble of climate models, Dokl. Earth Sci., 2022, vol. 507, no. 1, pp. 952–958.

    Article  ADS  CAS  Google Scholar 

  39. Prokhorova, U.V. and Urazgildeeva, A.V., Effect from polynyas in the Siberian Arctic seas to atmospheric transport of heat and moisture, IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 606, no. 012047.

  40. Radionov, V.F., Rusina, E.N., and Sibir, E.E., Long-term variability of integral and spectral transparency of the atmosphere at Mirny observatory, Antarctica, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 2, pp. 74–80.

    Article  Google Scholar 

  41. Sakerin, S.M., Golobokova, L.P., Kabanov, D.M., K-alashnikova, D.A., Kozlov, V.S., Kruglinskii, I.A., Makarov, V.I., Makshtas, A.P., Popova, S.A., Radionov, V.F., Simonova, G.V., Turchinovich, Yu.S., Khodzher, T.V., Khuriganova, O.I., Chankina, O.V., and Chernov, D.G., Measurements of physicochemical characteristics of atmospheric aerosol at research station ice base Cape Baranov in 2018, Atmos. Oceanic Opt., 2019a, vol. 32, no. 6, pp. 511–520.

    Article  CAS  Google Scholar 

  42. Sakerin, S.M., Golobokova, L.P., Kabanov, D.M., K-ozlov, V.S., Pol’kin, V.V., Radionov, V.F., and Chernov, DG., Comparison of average aerosol characteristics in neighboring arctic regions, Atmos. Oceanic Opt., 2019b, vol. 32, no. 1, pp. 33–40.

    Article  CAS  Google Scholar 

  43. Sakerin, S.M., Kabanov, D.M., Makarov, V.I., Pol’kin, V.V., Popova, S.A., Chankina, O.V., Pochufarov, A.O., Radionov, V.F., and Rize, D.D., Spatial distribution of atmospheric aerosol physicochemical characteristics in the Russian sector of the Arctic Ocean, Atmosphere, 2020, vol. 11, no. 11, p. 1170.

    Article  ADS  CAS  Google Scholar 

  44. Sakerin, S.M., Golobokova, L.P., Kabanov, D.M., Khuriganowa, O.I., Pol’kin, V.V., Radionov, V.F., Sidorova, O.R., and Turchinovich, Y.S., Spatial distribution of aerosol characteristics over the South Atlantic and Southern Ocean using multiyear (2004–2021) measurements from Russian Antarctic expeditions, Atmosphere, 2022, vol. 13, no. 3, p. 427.

    Article  ADS  CAS  Google Scholar 

  45. Sibir, E.E., Radionov, V.F., and Rusina, E.N., Results of long-term observations of total ozone in Antarctica and over the Atlantic and Southern oceans, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 3, pp. 161–168.

    Article  Google Scholar 

  46. Sibir, E.E., Radionov, V.F., and Rusina, E.N., Database of hourly and daily sums of total radiation at Russian Antarctic stations: Analysis of changes in total radiation for the entire period of observations in Antarctica, Probl. Arkt. Antarkt., 2021, vol. 67, no. 3, pp. 249–260.

    Google Scholar 

  47. Skakun A.A., Chikhachev K.B., Ekaikin A.A., Kozachek, A.V., Vladimirova, D.O., Veres, A.N., Verkulich, S.R., Sidorova, O.R., and Demidov, N.E., Isotopic composition of atmospheric precipitation and natural waters in the Barentsburg area (Spitsbergen), Led Sneg., 2020, vol. 60, no. 3, pp. 379–394.

    Google Scholar 

  48. Soldatenko, S.A. and Alekseev, G.V., Managing climate risks associated with socio-economic development of the Russian Arctic, IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 606, no. 012060.

  49. Svyashchennikov, P.N., Prokhorova, U.V., and Ivanov, B.V., Comparison of atmospheric circulation in the area of Spitsbergen in 1920–1950 and in the modern warming period, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 1, pp. 22–28.

    Article  Google Scholar 

  50. Teben’kova, N.A., Ekaikin, A.A., Lepple, T., Notts, D., Kozachek, A.V., and Veres, A.N., Relationship between the isotopic composition of different types of precipitation in Central Antarctica and air temperature, Probl. Arkt. Antarkt., 2021, vol. 67, no. 4, pp. 368–381.

    Google Scholar 

  51. Thurnherr, I., Kozachek, A., Graf, P., Weng, Y., Bolshiyanov, D., Landwehr, S., Pfahl, S., Schmale, J., Sodemann, H., Steen-Larsen, H.C., Toffoli, A., Wernli, H., and Aemisegger, F., Meridional and vertical variations of the water vapour isotopic composition in the marine boundary layer over the Atlantic and Southern oceans, Atmos. Chem. Phys., 2020, vol. 20, pp. 5811–5835.

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Klepikov.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Russian National Report: Meteorology and Atmospheric Sciences: 2019–2022. Edited by I.I. Mokhov, A. A. Krivolutsky, Moscow, MAKS Press, 2023, p. 440.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klepikov, A.V. Russian Research in the Field of Polar Meteorology in 2019–2022. Izv. Atmos. Ocean. Phys. 59 (Suppl 3), S326–S339 (2023). https://doi.org/10.1134/S0001433823150045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823150045

Keywords:

Navigation