Skip to main content
Log in

Russian Studies of Atmospheric Ozone and Its Precursors in 2019–2022

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

We present the most significant results of Russian scientists in the field of atmospheric ozone research for 2019–2022 and examine observations of tropospheric ozone, its distribution and variability on the territory of the Russian Federation, its relation with atmospheric parameters, modeling of formation processes, and its impact on public health. The state of stratospheric ozone over Russia, modeling of processes in the ozonosphere, and methods and instruments being developed are also analyzed. The review is a part of Russia’s national report on meteorology and atmospheric sciences, which was prepared for the International Association of Meteorology and Atmospheric Sciences (IAMAS). It has been reviewed and approved at the 28th General Assembly of the International Union of Geodesy and Geophysics (IUGG).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Andreev, V.V., Arshinov, M.Yu., Belan, B.D., Davydov, D.K., Elansky, N.F., Zhamsueva, G.S., Zayakhanov, A.S., Ivlev, G.A., Kozlov, A.V., Kotel’nikov, S.N., Kuznetsova, I.N., Lapchenko, V.A., Lezina, E.A., Postylyakov, O.V., Savkin D.E., et al., Surface ozone concentration over Russian territory in the first half of 2020, Atmos. Oceanic Opt., 2020, vol. 33, no. 9, pp. 671–681.

    Article  ADS  CAS  Google Scholar 

  2. Andreev, V.V., Arshinov, M.Yu., Belan, B.D., Belan, S.B., Davydov, D.K., Demin, V.I., Elansky, N.F., Zhamsueva, G.S., Zayakhanov, A.S., Ivlev, G.A., Kozlov, A.V., Kotel’nikov, S.N., Kuznetsova, I.N., Lapchenko, V.A., Lezina, E.A., et al., Surface ozone concentration in Russia in the second half of 2020, Atmos. Oceanic Opt., 2021, vol. 34, no. 4, pp. 347–356.

    Article  CAS  Google Scholar 

  3. Andreev, V.V., Arshinov, M.Yu., Belan, B.D., Belan, S.B., Davydov, D.K., Demin, V.I., Dudorova, N.V., Elans-ky, N.F., Zhamsueva, G.S., Zayakhanov, A.S., Ivlev, G.A., Kozlov, A.V., Konovaltseva, L.V., Kotel’nikov, S.N., Kuznetsova, I.N., et al., Tropospheric ozone concentration on the territory of Russia in 2021, Atmos. Oceanic Opt., 2022, vol. 35, no. 7, pp. 741–757.

    Article  ADS  CAS  Google Scholar 

  4. Antokhin, P.N., Antokhina, O.Yu., Antonovich, V.V., Arshinova, V.G., Arshinov, M.Yu., Belan, B.D., Bela-n, S.B., Davydov, D.K., Dudorova, N.V., Ivlev, G.A., Kozlov, A.V., Pestunov, D.A., Rasskazchikova, T.M., Savkin, D.E., Simonenkov, D.V., et al., Interrelation between dynamics of gas composition and meteorological parameters in the region of Tomsk, Atmos. Oceanic Opt., 2020, vol. 33, no. 7, pp. 629–637.

    Article  ADS  CAS  Google Scholar 

  5. Antokhin, P.N., Arshinov, M.Yu., Belan, B.D., Belan, S.B., Sklyadneva, T.K., and Tolmachev, G.N., Long-term variability of ozone and aerosol in the Tomsk region and feasibility of forecasting their average annual concentrations for a decade, Atmos. Oceanic Opt., 2010, vol. 23, no. 9, pp. 772–776.

    Google Scholar 

  6. Arshinova, V.G., Belan, B.D., Lapchenko, V.A., Lapchenko, E.V., Rasskazchikova, T.M., Savkin, D.E., Sklyadneva, T.K., Tolmachev, G.N., and Fofonov, A.V., Changes in surface ozone concentration during precipitation, Atmos. Oceanic Opt., 2019, vol. 32, no. 8, pp. 671–679.

    Article  CAS  Google Scholar 

  7. Bazhenov, O.E., Increased humidity in the stratosphere as a possible factor of ozone destruction in the Arctic during the spring 2011 using Aura MLS observations, Int. J. Remote Sens., 2019, vol. 40, no. 9, pp. 3448–3460.

    Article  Google Scholar 

  8. Bazhenov, O.E., Ozone anomaly during winter–spring 2019–2020 in the Arctic and over the north of Eurasia using satellite (Aura MLS/OMI) observations, Atmos. Oceanic Opt., 2021, vol. 34, no. 7, pp. 643–648.

    Article  ADS  CAS  Google Scholar 

  9. Bazhenov, O.E., Nevzorov, A.V., Dolgii, S.I., El’nikov, A.V., and Sysoev, S.M., Analysis of annual variations in total ozone content and integral aerosol backscattering coefficient in the stratosphere over Tomsk, Optika Atmosfery i Okeana. Fizika atmosfery: Tezisy dokladov XXV Mezhdunarodnogo simpoziuma (Atmospheric and Oceanic Optics. Atmospheric Physics: Abstracts of Presentations of the XXV International Symposium), Tomsk: IOA SO RAN, 2019, p. 145.

  10. Bazhenov, O.E., Nevzorov, A.A., Nevzorov, A.V., Dolgii, S.I., and Makeev, A.P., Disturbance of the stratosphere over Tomsk during winter 2017/2018 using lidar and Aura MLS/OMI observations, Atmos. Oceanic Opt., 2020, vol. 33, no. 7, pp. 622–628.

    Article  ADS  CAS  Google Scholar 

  11. Bazhenov, O.E., Nevzorov, A.A., Nevzorov, A.V., Dolgii, S.I., and Makeev, A.P., Disturbance of the stratosphere over Tomsk in winter 2017–2018 using lidar and satellite (Aura MLS) observations, Proc. SPIE, 2021a, vol. 11916, pp. 11916J-1–11916J-6.

    Google Scholar 

  12. Bazhenov, O.E., Nevzorov, A.A., Nevzorov, A.V., Dolgii, S.I., and Makeev, A.P., Disturbance of the stratosphere over Tomsk prior to the 2018 major sudden stratospheric warming: Effect of ClO dimer cycle, Opt. Mem. Neural Networks (Inf. Opt.), 2021b, vol. 30, no. 2, pp. 146–156.

  13. Bazhenov, O.E., Nevzorov, A.A., Nevzorov, A.V., Dolgii, S.I., and Makeev, A.P., Disturbance of the stratosphere over Tomsk during winter 2017/2018 according to lidar and satellite (Aura MLS/OMI) observations, in Optika Atmosfery i Okeana. Fizika atmosfery: Tezisy dokladov XXVII Mezhdunarodnogo simpoziuma (Atmospheric and Oceanic Optics. Atmospheric Physics: Abstracts of Presentations of the XXVII International Symposium), Tomsk: IOA SO RAN, 2021c, p. 54.

  14. Bazhenov, O.E., Nevzorov, A.V., Smirnov, S.V., El’nikov, A.V., and Loginov, V.A., Comparison of the results of total ozone observations over Tomsk (2006–2020), obtained by three spectrophotometers, Optika Atmosfery i Okeana. Fizika atmosfery: Materialy XXVIII Mezhdunarodnogo simpoziuma (Atmospheric and Oceanic Optics. Atmospheric Physics: Proceedings of the XXVIII International Symposium), Tomsk: IOA SO RAN, 2022a.

  15. Bazhenov, O.E., Nevzorov, A.V., Smirnov, S.V., Elnikov, A.V., and Loginov, V.A., Comparison of observations of total ozone content over Tomsk (2006–2020) obtained using three spectrophotometers, Proc. SPIE, 2022b, vol. 12341.

  16. Belan, B.D. and Savkin, D.E., The role of air humidity in variations in near-surface ozone concentration, Atmos. Oceanic Opt., 2019, vol. 32, no. 5, pp. 586–589.

    Article  CAS  Google Scholar 

  17. Belan, B.D., Ancellet, G., Andreeva, I.S., Antokhin, P.N., Arshinova, V.G., Arshinov, M.Y., Balin, Y.S., Barsuk, V.E., Belan, S.B., Chernov, D.G., Davydov, D.K., Fofonov, A.V., Ivlev, G.A., Kotel’nikov, S.N., Kozlov, A.S., et al., Integrated airborne investigation of the air composition over the Russian sector of the Arctic, Atmos. Meas. Tech., 2022, vol. 15, no. 13, pp. 3941–3967.

    Article  CAS  Google Scholar 

  18. Belan, B.D., Ivlev, G.A., Kozlov, A.V., Pestunov, D.A., Sklyadneva, T.K., and Fofonov, A.V., Solar radiation measurements at the Fonovaya Observatory: Part I: Methodical aspects and specifications, Atmos. Oceanic Opt., 2023, vol. 36, no. 1, pp. 47–53.

    Article  ADS  Google Scholar 

  19. Belikovich, M.V., Kulikov, M.Y., Grygalashvyly, M., Sonnemann, G.R., Ermakova, T.S., Nechaev, A.A., and Feigin, A.M., Ozone chemical equilibrium in the extended mesopause under the nighttime conditions, Adv. Space Res., 2018, vol. 61, no. 1, pp. 426–432.

    Article  ADS  CAS  Google Scholar 

  20. Belikovich, M.V., Ryskin, V.G., Kulikov, M.Yu., Krasilnikov, A.A., Shvetsov, A.A., and Feigin, A.M., Microwave observations of atmospheric ozone over Nizhny Novgorod in winter of 2017–2018, Radiophys. Quantum Electron., 2021, vol. 63, pp. 191–206.

    Article  ADS  Google Scholar 

  21. Berezina, E., Moiseenko, K., Skorokhod, A., Elansky, N., Belikov, I., and Pankratova, N., Isoprene and monoterpenes over Russia and their impacts in tropospheric ozone formation, Geogr., Environ., Sustainability, 2019, vol. 12, no. 1, pp. 63–74.

    Google Scholar 

  22. Berezina, E.V., Moiseenko, K.B., Skorokhod, A.I., Pankratova, N.V., Belikov, I.B., Belousov, V.A., and Elansky, N.F., Impact of VOCs and NOx on ozone formation in Moscow, Atmosphere, 2020, vol. 11, p. 1262.

    Article  ADS  CAS  Google Scholar 

  23. Berezina, E., Moiseenko, K., Vasileva, A., Pankratova, N., Skorokhod, A., Belikov, I., and Belousov, V., Emission ratios and source identification of VOCs in Moscow in 2019–2020, Atmosphere, 2022, vol. 13, p. 257.

    Article  ADS  CAS  Google Scholar 

  24. Bordovskaya, Yu.I., Virolainen, Ya.A., and Timofeev, Yu.M., Comparison of ground-based and satellite methods for determining vertical ozone profiles, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2022, vol. 19, no. 2, pp. 225–231.

    Article  Google Scholar 

  25. Borisov, D.V., Shalygina, I.Yu., and Lezina, E.A., Study of seasonal and diurnal variability of ground-level ozone concentrations, Gidrometeorol. Issled. Prognozy, 2020, no. 3, pp. 122–135.

  26. Borovski, A.N., Elansky, N.F., Ponomarev, N.A., and Postylyakov, O.V., Comparison of measured and simulated by SILAM NO2 integral content in atmospheric boundary layer in Moscow region, Proc. SPIE, 2019, vol. 11152, p. 111520.

    Google Scholar 

  27. Borovski, A.N., Elokhov, A.S., Kirsanov, A.A., and Postylyakov, O.V., Measured and simulated integral content of NO2 in the atmospheric boundary layer in Moscow region in summer, Proc. SPIE, 2020, vol. 11531, p. 1153108.

    Google Scholar 

  28. Bruchkovski, I.I., Borovski, A.N., Dzhola, A.V., Elansky, N.F., Postylyakov, O.V., Bazhenov, O.E., Romanovskii, O.A., Sadovnikov, S.A., and Kanaya, Y., Observations of integral formaldehyde content in the lower troposphere in urban agglomerations of Moscow and Tomsk using the method of differential optical absorption spectroscopy, Atmos. Oceanic Opt., 2019, vol. 32, no. 3, pp. 248–256.

    Article  Google Scholar 

  29. Chan, K.L., Valks, P., Heue, K.-P., Lutz, R., Hedelt, P., Loyola, D., Pinardi, G., Van Roozendael, M., Hendrick, F., Wagner, T., Kumar, V., Bais, A., Piters, A., Irie, H., Takashima, H., et al., Global Ozone Monitoring Experiment-2 (GOME-2) daily and monthly level-3 products of atmospheric trace gas columns, Earth Syst. Sci. Data, 2023, vol. 15, pp. 1831–1870.

    Article  ADS  Google Scholar 

  30. Davydova, M.A., Elansky, N.F., Zakharova, S.A., and Postylyakov, O.V., Application of a numerical–asymptotic approach to the problem of restoring the parameters of a local stationary source of anthropogenic pollution, Dokl. Math., 2021, vol. 103, pp. 26–31.

    Article  MathSciNet  Google Scholar 

  31. Dolgii, S.I., Nevzorov, A.A., Nevzorov, A.V., Romanovskii, O.A., and Kharchenko, O.V., Lidar differential absorption system for measuring ozone in the upper troposphere–stratosphere, J. Appl. Spectrosc., 2019, vol. 85, no. 6, pp. 1114–1120.

    Article  ADS  CAS  Google Scholar 

  32. Dolgii, S.I., Nevzorov, A.A., Nevzorov, A.V., Gridnev, Yu.V., and Kharchenko, O.V., Measurements of ozone vertical profiles in the upper troposphere–stratosphere over Western Siberia by DIAL, MLS, and IASI, Atmosphere, 2020a, vol. 11, no. 2, p. 96.

    Article  Google Scholar 

  33. Dolgii, S.I., Nevzorov, A.A., Nevzorov, A.V., Gridnev, Yu.V., and Kharchenko, O.V., Temperature correction of the vertical ozone distribution retrieval at the Siberian lidar station using the MetOp and Aura data, Atmosphere, 2020b, vol. 11, no. 11, p. 1139.

    Article  ADS  Google Scholar 

  34. Dolgii, S.I., Nevzorov, A.A., Nevzorov, A.V., Romanovskii, O.A., and Kharchenko, O.V., Comparison of ozone vertical profiles in the upper troposphere–stratosphere measured over Tomsk, Russia (56.5° N, 85.0° E) with DIAL, MLS, and IASI, Int. J. Remote Sens., 2020c, vol. 41, no. 22, pp. 8590–8609.

    Article  Google Scholar 

  35. Dolgii, S.I., Nevzorov, A.V., Nevzorov, A.A., Gridnev, Yu.V., Romanovskii, O.A., and Kharchenko, O.V., Influence of absorption cross-sections on retrieving the ozone vertical distribution at the Siberian lidar station, Atmosphere, 2022, vol. 13, no. 2, p. 293.

    Article  ADS  Google Scholar 

  36. Dorokhov, V., Yushkov, V., Makshtas, A., Ivlev, G., Tereb, N., Savinykh, V., Shepelev, D., Nakajima, H., McElroy, C.T., Tarasick, D., Goutail, F., Pommereau, J.-P., and Pazmino, A., Brewer, SAOZ and ozonesonde observations in Siberia, Atmosphere–Ocean, 2015, vol. 53, no. 1, pp. 14–18.

    Article  ADS  Google Scholar 

  37. Egorova, T., Sedlacek, J., Sukhodolov, T., Karagodin-Doyennel, A., Zilker, F., and Rozanov, E., Montreal Protocol's impact on the ozone layer and climate, Atmos. Chem. Phys., 2023, vol. 23, no. 9, pp. 5135–5147.https://doi.org/10.5194/acp-23-5135-2023

  38. Elansky, N.F., Russian studies of atmospheric ozone and its precursors in 2015–2018, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 2, pp. 141–155.

    Article  Google Scholar 

  39. Elansky, N.F., Shilkin, A.V., Semutnikova, E.G., Zaharova, P.V., Rakitin, V.S., Ponomarev, N.A., and Verevkin, Y.M., Weekly cycle of pollutant concentrations in near-surface air over Moscow, Atmos. Oceanic Opt., 2019, vol. 32, no. 1, pp. 85–93.

    Article  CAS  Google Scholar 

  40. Elansky, N.F., Shilkin, A.V., Ponomarev, N.A., Semutnikova, E.G., and Zakharova, P.V., Weekly patterns and weekend effects of air pollution in the Moscow megacity, Atmos. Environ., 2020, vol. 224, p. 117303.

    Article  CAS  Google Scholar 

  41. Elansky, N.F., Shilkin, A.V., Ponomarev, N.A., Zakharova, P.V., Kachko, M.D., and Polyakov, T.I., Spatiotemporal variations in the content of pollutants in the Moscow air basin and their emissions, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 1, pp. 80–94.

    Article  Google Scholar 

  42. Fedorova, E.I., Lapchenko, V.A., Elansky, N.F., and Skorokhod, A.I., Variability of ground-level ozone in the Karadag Nature Reserve, in Trudy IV Vserossiiskoi konferentsii s mezhdunarodnym uchastiem, posvyashchennoi pamyati akademika A.M. Obukhova “Turbulentnost’, dinamika atmosfery i klimata 2022" (Proceedings of the IV All-Russian Conference with International Participation Commemorating Academician A.M. Obukhov "Turbulence, Dynamics of the Atmosphere and Climate”), Moscow, 2022.

  43. Frol’kis, V.A., Karol’, I.L., and Kiselev, A.A., Is there a link between the quasi-biennial oscillations of the atmosphere and changes in ozone and temperature in Antarctica?, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 2021, vol. 601, pp. 19–34.

    Google Scholar 

  44. Grankin, D., Mironova, I., Bazilevskaya, G., Rozanov, E., and Egorova, T., Atmospheric response to EEP during geomagnetic disturbances, Atmosphere, 2023, vol. 14, p. 273.

    Article  ADS  CAS  Google Scholar 

  45. Gruzdev, A.N., Accounting for autocorrelation in the linear regression problem by an example of analysis of the atmospheric column NO2 content, Izv., Atmos. Ocean. Phys., 2019a, vol. 55, no. 1, pp. 65–72.

    Article  Google Scholar 

  46. Gruzdev, A.N., Accounting for long-term serial correlation in a linear regression problem, IOP Conf. Ser.: Earth Environ. Sci., 2019b, vol. 231, 012020, pp. 1–10.

  47. Gruzdev, A.N. and Elokhov, A.S., Comparison of the results of ground-based and satellite (OMI) measurements of the NO2 contents in the stratosphere and troposphere over Zvenigorod: Sensitivity to cloud cover and tropospheric pollution, Proc. SPIE, 2021a, vol. 11916, p. 1191628.

    Google Scholar 

  48. Gruzdev, A.N. and Elokhov, A.S., Long-term trends and interannual variations of the NO2 contents in the troposphere and stratosphere of the western Moscow region according to results of remote spectrometric measurements of the vertical NO2 profile, Proc. SPIE, 2021b, vol. 11916, p. 1191628.

    Google Scholar 

  49. Gruzdev, A.N. and Elokhov, A.S., Changes in the column content and vertical distribution of NO2 according to the results of 30-year measurements at the Zvenigorod Scientific Station of the A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Izv., Atmos. Ocean. Phys., 2021c, vol. 57, no. 1, pp. 91–103.

    Article  Google Scholar 

  50. Gruzdev, A.N. and Elokhov, A.S., Three decades of remote sensing of NO2 vertical distribution and column content at the A.M. Obukhov Institute of Atmospheric Physics, IOP Conf. Ser.: Earth Environ. Sci., 2022a, vol. 1040, 012027, pp. 1–8.

  51. Gruzdev, A.N. and Elokhov, A.S., Trends in total, tropospheric and stratospheric NO2 contents based on results of ground-based and satellite (OMI) measurements, Proc. SPIE, 2022b, vol. 12341, pp. 123412G-1–123412G-6.

  52. Gruzdev, A.N., Elansky, N.F., Arabov, A.Ya., Elokhov, A.S., Savinykh, V.V., Senik, I.A., and Borovskii, A.N., Manifestation of the 11-year solar cycle in the total content of O3 and NO2 according to long-term measurements at scientific stations of the A.M. Obukhov Institute of Atmospheric Physics, RAS, in Semnadtsataya ezhegodnaya konferentsiya “Fizika plazmy v solnechnoi sisteme”: Tezisy dokladov (Seventeenth Annual Conference “Physics of Plasma in the Solar System”), Moscow: Inst. kosm. issled. RAN, 2022a, p. 207.

  53. Gruzdev, A.N., Arabov, A.Ya., Elokhov, A.S., Savinykh, V.V., Senik, I.A., Borovskii, A.N., and Elansky, N.F., Long-term observations of stratospheric species at the A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences: Analysis of trends and interannual variations in the total contents of O3 and NO2, Izv., Atmos. Ocean. Phys., 2022b, vol. 58, no. 3, pp. 270–283.

    Article  Google Scholar 

  54. Gruzdev, A.N., Elansky, N.F., Elokhov, A.S., Savinykh, V.V., Arabov, A.Ya., Borovski, A.N., and Senik, I.A., Long-term measurements of total NO2 and O3 column contents at stations of the A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences: Observational methods, long-term trends and interannual variations of the species, Proc. SPIE, 2022c, vol. 12341, pp. 1234172-1–1234172-6. https://mosecom.mos.ru/. https://www.mos.ru/documents/doklady/view.

  55. Iasenko, E.A., Marugin, A.M., Chelibanov, V.P., Chelibanov, I.V., Frank-Kamenetskaya, O.V., and Pinchuk, O.A., Singlet oxygen in the lower atmosphere: Origin, measurement and participation, in Processes and Phenomena at the Boundary between Biogenic and Abiogenic Nature. Springer Nature, Switzerland AG, 2019, ch. 8, pp. 137–153.

    Google Scholar 

  56. Ionov, D.V. and Privalov, V.I., The differential spectroscopy technique DOAS in the problem of determining the total ozone content from measurements of ground-based UV spectrometer UFOS, Atmos. Oceanic Opt., 2022, vol. 5, no. 1, pp. 1–7.

    Article  ADS  Google Scholar 

  57. Ivanova, N.S., A statistical model of winter/spring polar ozone, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 5, pp. 295–301.

    Article  Google Scholar 

  58. Ivanova, N.S., Kruchenitskii, G.M., Kuznetsova, I.N., Lapchenko, V.A., and Statnikov, V.A., Ozone content over the Russian Federation in 2018, Russ. Meteorol. Hydrol., 2019a, vol. 44, no. 2, pp. 152–158.

    Article  Google Scholar 

  59. Ivanova, N.S., Kruchenitskii, G.M., Kuznetsova, I.N., Lapchenko, V.A., and Shirotov, V.V., Ozone content over the Russian Federation in the first quarter of 2019, Russ. Meteorol. Hydrol., 2019b, vol. 44, no. 6, pp. 424–429.

    Article  Google Scholar 

  60. Ivanova, N.S., Kruchenitskii, G.M., Kuznetsova, I.N., Lapchenko, V.A., and Shirotov, V.V., Ozone content over the Russian Federation in the second quarter of 2019, Russ. Meteorol. Hydrol., 2019c, vol. 44, no. 9, pp. 639–642.

    Article  Google Scholar 

  61. Ivanova, N.S., Kruchenitskii, G.M., Kuznetsova, I.N., Lapchenko, V.A., and Shirotov, V.V., Ozone content over the Russian Federation in the third quarter of 2019, Russ. Meteorol. Hydrol., 2019d, vol. 44, no.12, pp. 844–849.

    Article  Google Scholar 

  62. Ivanova, N.S., Kruchenitskii, G.M., Kuznetsova, I.N., Shalygina, I.Yu., Lapchenko, V.A., and Demin, V.I., Ozone content over the Russian Federation in 2019, Russ. Meteorol. Hydrol., 2020a, vol. 45, no. 3, pp. 211–218.

    Article  Google Scholar 

  63. Ivanova, N.S., Kruchenitskii, G.M., Kuznetsova, I.N., Lapchenko, V.A., and Demin, V.I., Ozone content over the Russian Federation in the first quarter of 2020, Russ. Meteorol. Hydrol., 2020b, vol. 45, no. 6, pp. 447–454.

    Article  Google Scholar 

  64. Ivanova, N.S., Kruchenitskii, G.M., Kuznetsova, I.N., Ozone content over the Russian Federation in the second quarter of 2020, Russ. Meteorol. Hydrol., 2020c, vol. 45, no. 8, pp. 599–605.

    Article  Google Scholar 

  65. Ivanova, N.S., Kruchenitskii, G.M., Kuznetsova, I.N., Ozone content over the Russian Federation in the third quarter of 2020, Russ. Meteorol. Hydrol., 2020d, vol. 45, no. 11, pp. 814–818.

    Article  Google Scholar 

  66. Ivanova, N.S., Kuznetsova, I.N., Shalygina, I.Yu., and Lezina, E.A., Ozone content over the Russian Federation in 2020, Russ. Meteorol. Hydrol., 2021a, vol. 46, no. 2, pp. 129–137.

    Article  Google Scholar 

  67. Ivanova, N.S., Kuznetsova, I.N., and Lezina, E.A., Ozone content over the Russian Federation in the first quarter of 2021, Russ. Meteorol. Hydrol., 2021b, no. 6, pp. 136-142.

  68. Ivanova, N.S., Kuznetsova, I.N., and Lezina, E.A., Ozone content over the Russian Federation in the second quarter of 2021, Russ. Meteorol. Hydrol., 2021c, vol. 46, no. 8, pp. 553–559.

    Article  Google Scholar 

  69. Ivanova, N.S., Shalygina, I.Yu., and Lezina, E.A., Ozone content over the Russian Federation in the third quarter of 2021, Russ. Meteorol. Hydrol., 2021d, vol. 46, no. 11, pp. 799–804.

    Article  Google Scholar 

  70. Ivanova, N.S., Kuznetsova, I.N., and Lezina, E.A., Ozone content over the Russian Federation in 2021, Russ. Meteorol. Hydrol., 2022a, vol. 47, no. 3, pp. 241–249.

    Article  Google Scholar 

  71. Ivanova, N.S., Kuznetsova, I.N., and Lezina, E.A., Ozone content over the Russian Federation in the first quarter of 2022, Meteorol. Gidrol., 2022b, no. 6, pp. 137–143.

  72. Ivanova, N.S., Kuznetsova, I.N., and Lezina, E.A., Ozone content over the Russian Federation in the second quarter of 2022, Meteorol. Gidrol, 2022c, no. 8, pp. 138–142.

  73. Ivanova, N.S., Kuznetsova, I.N., and Lezina, E.A., Ozone content over the Russian Federation in the third quarter of 2022, Meteorol. Gidrol, 2022d, no. 11, pp. 138–142.

  74. Ivashkin, V.T., Kotel’nikov, S.N., and Stepanov, E.V., Possible increase in the severity of COVID-19 due to the combined effect of the Sars-CoV-19 virus and ozone with a seasonal increase in ozone content in the surface atmosphere, Ekol. Mir., 2020, no. 4.

  75. Karagodin-Doyennel, A., Rozanov, E., Sukhodolov, T., Egorova, T., Saiz-Lopez, A., Cuevas, C.A., Fernandez, R.P., Sherwen, T., Volkamer, R., Koenig, T.K., Giroud, T., and Peter, T., Iodine chemistry in the chemistry–climate model SOCOL-AERv2-I, Geosci. Model Dev., 2021, vol. 14, pp. 6623–6645.

    Article  ADS  Google Scholar 

  76. Karagodin-Doyennel, A., Rozanov, E., Sukhodolov, T., Egorova, T., Sedlacek, J., Ball, W., and Peter, T., The historical ozone trends simulated with the SOCOLv4 and their comparison with observations and reanalyses, Atmos. Chem. Phys., 2022a, vol. 22, no. 23, pp. 15333–15350.

    Article  ADS  CAS  Google Scholar 

  77. Karagodin-Doyennel, A., Rozanov, E., Sukhodolov, T., Egorova, T., Sedlacek, J., and Peter, T., The future ozone trends in changing climate simulated with SOCO-Lv4, Atmos. Chem. Phys., 2023, vol. 23, no. 8, pp. 4801–4817. https://doi.org/10.5194/acp-23-4801-2023

  78. Khodzher, T.V., Zhamsueva, G.S., Zayakhanov, A.S., Dement’eva, A.L., Tsydypov, V.V., Balin, Yu.S., Penner, I.E., Kokhanenko, G.P., Nasonov, S.V., Klemasheva, M.G., Golobokova, L.P., and Potemkin, V.L., Ship-based studies of aerosol–gas admixtures over Lake Baikal basin in summer 2018, Atmos. Oceanic Opt., 2019, vol. 32, no. 4, pp. 434–441.

    Article  Google Scholar 

  79. Khuriganova, O., Obolkin, V., Akimoto, H., Ohizumi, T., Khodzher, T., Potemkin, V., and Golobokova, L., Long-term dynamics of ozone in surface atmosphere at remote mountain, rural and urban sites of south-east Siberia, Russia, Open Access Libr. J., 2022, vol. 3, p. e2578.

    Google Scholar 

  80. Kiselev, A.A., Ozone deficiency reminds us of itself, Ross. Pol. Issled., 2020, no. 2, pp. 52–54.

  81. Kotel’nikov, S.N. and Stepanov, E.V., The role of water aerosol in ozone destruction in the surface atmosphere, Kratk. Soobshch. Fiz. FIAN, 2019, vol. 46, no. 9, pp. 23–30.

    Google Scholar 

  82. Kotel’nikov, S.N. and Stepanov, E.V., Anomalous dynamics of tropospheric ozone content in the spring of 2020 in central Russia, Kratk. Soobshch. Fiz. FIAN, 2021, vol. 48, no. 3, pp. 44–51.

    Google Scholar 

  83. Kotel’nikov, S.N., Stepanov, E.V., Ivashkin, V.T., Ground-level ozone concentration and the health status in various age groups of Muscovites in summer 2010, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 11, pp. 1602–1613.

    Article  Google Scholar 

  84. Kreher, K., Van Roozendael, M., Hendrick, F., Apituley, A., Dimitropoulou, E., Frieß, U., Richter, A., Wagner, T., Lampel, J., Abuhassan, N., Ang, L., Anguas, M., Bais, A., Benavent, N., Bosch, T., et al., Intercomparison of NO2, O4, O3 and HCHO slant column measurements by MAX-DOAS and zenith-sky UV-visible spectrometers during CINDI-2, Atmos. Meas. Tech., 2020, vol. 13, pp. 2169–2208.

    Article  CAS  Google Scholar 

  85. Krivolutsky, A.A., V’yushkova, T.Yu., Banin, M.V., and Tolstykh, M.A., Experimental global forecasts of atmospheric parameters based on experimental technology that takes into account ozone photochemistry (FOROZ model), Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 2, pp. 243–253.

  86. Krivolutsky, A.A., V’yushkova, T.Yu., Cherepanova, L.A., Banin, M.V., Repnev, A.I., and Kukoleva, A.A., Numerical global models of the ionosphere, ozonosphere, temperature regime, and circulation for altitudes of 0–130 km: Results and prospects, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 9, pp. 596–605.

    Article  Google Scholar 

  87. Kulikov, M.Yu. and Belikovich, M.V., Nighttime O(1D) distributions in the mesopause region derived from SAB-ER data, Ann. Geophys., 2020, vol. 38, pp. 815–822.

    Article  ADS  CAS  Google Scholar 

  88. Kulikov, M.Yu., Belikovich, M.V., Grygalashvyly, M., Sonnemann, G.R., Ermakova, T.S., Nechaev, A.A., and Feigin, A.M., Nighttime ozone chemical equilibrium in the mesopause region, J. Geophys. Res.: Atmos., 2018, vol. 125, p. JD026717.

    Google Scholar 

  89. Kulikov, M.Yu., Nechaev, A.A., Belikovich, M.V., Vorobeva, E.V., Grygalashvyly, M., Sonnemann, G.R., and Feigin, A.M., Boundary of nighttime ozone chemical equilibrium in the mesopause region from SABER data: Implications for derivation of atomic oxygen and atomic hydrogen, Geophys. Res. Lett., 2019, vol. 46, no. 2, pp. 997–1004.

    Article  ADS  CAS  Google Scholar 

  90. Kulikov, M.Yu., Belikovich, M.V., and Feigin, A.M., Analytical investigation of the reaction-diffusion waves in the mesopause photochemistry, J. Geophys. Res.: Atmos., 2020, vol. 125, p. JD033480.

    Article  Google Scholar 

  91. Kulikov, M.Y., Belikovich, M.V., and Feigin, A.M., The 2-day photochemical oscillations in the mesopause region: The first experimental evidence?, Geophys. Res. Lett., 2021, vol. 48, p. e2021GL092795.

  92. Kulikov, M.Y., Belikovich, M.V., Grygalashvyly, M., Sonnemann, G.R., and Feigin, A.M., The revised method for retrieving daytime distributions of atomic oxygen and odd-hydrogens in the mesopause region from satellite observations, Earth Planets Space, 2022a, vol. 74, p. 44.

    Article  ADS  Google Scholar 

  93. Kulikov, M.Yu., Belikovich, M.V., Grygalashvyly, M., Sonnemann, G.R., and Feigin, A.M., Retrieving daytime distributions of O, H, OH, HO2, and chemical heating rate in the mesopause region from satellite observations of ozone and OH volume emission: The evaluation of the importance of the reaction H + O3 → O2 + OH in the ozone balance, Adv. Space Res., 2022b, vol. 69, no. 9, pp. 3362–3373.

    Article  ADS  CAS  Google Scholar 

  94. Kulikov, M.Yu., Belikovich, M.V., Chubarov, A.G., Dementeyva, S.O., and Feigin, A.M., Boundary of nighttime ozone chemical equilibrium in the mesopause region: Improved criterion of determining the boundary from satellite data, Adv. Space Res., 2023a, vol. 71, no. 6, pp. 2770–2780.

    Article  CAS  Google Scholar 

  95. Kulikov, M.Y., Krasil’nikov, A.A., Belikovich, M.V., Ryskin, V.G., Shvetsov, A.A., Skalyga, N.K., Kukin, L.M., and Feigin, A.M., High precision measurements of resonance frequency of ozone rotational transition J = 61.5–60.6 in the real atmosphere, Remote Sens., 2023b, vol. 15, p. 2259.

    Article  ADS  Google Scholar 

  96. Kulikov, Yu.Yu., Kirillov, A.S., Poberovskii, A.V., and Imkhasin, Kh.Kh., Microwave monitoring of middle atmosphere ozone in Apatity and Peterhof in the winter of 2021/2022, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 12, pp. 969–975.

    Article  Google Scholar 

  97. Kuznetsova, I.N., Nakhaev, M.I., Kirsanov, A.A., Bo-risov, D.V., Tkacheva, Yu.V., Rivin, G.S., and Lezina, E.A., Testing and prospects of air pollution forecasting technology using CHIMERE and COSMO-Ru2ART chemical transport models, Gidrometeorol. Issled. Prognozy, 2022, no. 4, pp. 147–170.

  98. Lapchenko, V.A. and Kuznetsova, I.N., Monitoring of ground-level ozone in the Karadag nature reserve in 2017–2021, Gidrometeorol. Issled. Prognozy, 2022, no. 2, pp. 113–125.

  99. Larin, I.K., Istoriya ozona (The History of Ozone), Moscow: RAN, 2022.

  100. Lokoshchenko, M.A., Bogdanovich, A.Yu., Elansky, N.F., and Lezina, E.A., Thermal inversions and their influence on the composition of the surface air layer over Moscow, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 6, pp. 559–567.

    Article  Google Scholar 

  101. Lukyanov, A.N., Vargin, P.N., and Yushkov, V.A., Lagrange studies of anomalously stable arctic stratospheric vortex observed in winter 2019–2020, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 3, pp. 247–253.

    Article  Google Scholar 

  102. Manney, G.L., Santee, M.L., Froidevaux, L., Hoppel, K., Livesey, N.J., and Waters, J.W., EOS MLS observations of ozone loss in the 2004–2005 Arctic winter, Geophys. Res. Lett., 2006, vol. 33, p. L04802.

    Article  ADS  Google Scholar 

  103. Matvienko, G.G., Babushkin, P.A., Bobrovnikov, S.M., Borovoi, A.G., Bochkovskii, D.A., Galileiskii, V.P., Grishin, A.I., Dolgii, S.I., Elizarov, A.I., Kokarev, D.V., Konoshonkin, A.V., Kryuchkov, A.V., Kustova, N.V., Nevzorov, A.V., Marichev, V.N., et al., Laser and Optical Sounding of the Atmosphere, Atmos. Oceanic Opt., 2020, vol. 33, no. 1, pp. 51–68.

    Article  Google Scholar 

  104. Mironova, I., Sinnhuber, M., Bazilevskaya, G., Clilverd, M., Funke, B., Makhmutov, V., Rozanov, E., Santee, M., Sukhodolov, T., and Ulich, T., Exceptional middle latitude electron precipitation detected by balloon observations: Implications for atmospheric composition, Atmos. Chem. Phys., 2022, vol. 22, pp. 6703–6716.

    Article  ADS  CAS  Google Scholar 

  105. Moiseenko, K.B., Berezina, E.V., Vasileva, A.V., Shtabkin, Yu.A., Skorokhod, A.I., Elansky, N.F., and Belikov, I.B., The NOx-limiting regime of photochemical ozone generation in a weakly polluted convective boundary layer: Observations at the ZOTTO Tall Tower Observatory in Central Siberia, 2007–2015, Dokl. Earth Sci., 2019, vol. 487, no. 6, pp. 981–985.

    Article  ADS  CAS  Google Scholar 

  106. Moiseenko, K.B., Vasileva, A.V., Skorokhod, A.I., Belikov, I.B., Repin, A.Y., and Shtabkin, Y.A., Regional impact of ozone precursor emissions on NOx and O3 levels at ZOTTO Tall Tower in Central Siberia, Earth Space Sci., 2021, vol. 8, no. 7, p. e2021EA001762.

  107. Moiseenko, K.B., Vasileva, A.V., Skorokhod, A.I., Shtabkin, Yu.A., Belikov, I.B., and Repin, A.Yu., Photostationary equilibrium in the O3–NOx system and ozone generation according to ZOTTO Tall Tower data, Atmos. Oceanic Opt., 2022, vol. 35, no. 1 Suppl., pp. S125–S132.

    Article  ADS  CAS  Google Scholar 

  108. Muthers, S., Anet, J.G., Stenke, A., Raible, C.C., Rozanov, E., Bronnimann, S., Peter, T., Arfeuille, F.X., Shapiro, A.I., Beer, J., Steinhilber, F., Brugnara, Y., and Schmutz, W., The coupled atmosphere–chemistry–ocean model SOCOL-MPIOM, Geosci. Model Dev., 2014, vol. 7, pp. 2157–2179.

    Article  ADS  Google Scholar 

  109. Nakhaev, M.I., Kuznetsova, I.N., Shalygina, I.Yu., Borisov, D.V., and Kirsanov, A.A., Forecasting concentrations of pollutants using chemical transport models, in Tezisy nauchno-prakticheskoi konferentsii po problemam gidrometeorologicheskikh prognozov, ekologii, klimata Sibiri (k 50-letiyu obrazovaniya FGBU “SibNIGMI”) (Abstracts of the Scientific and Practical Conference on Problems of Hydrometeorological Forecasts, Ecology, and Climate of Siberia (Toward the 50th Anniversary of the Foundation of the Federal State Budgetary Institution “SibNIGMI”), Novosibirsk, 2021.

  110. Nerobelov, G.M., Al-Subari, O., Timofeyev, Yu.M., Virolainen, Ya.A., Poberovskii, A.V., and Solomatnikova, A.A., Comparison of ground-based measurement results of total ozone near St. Petersburg, Izv., Atmos. Ocean. Phys., 2022a, vol. 58, no. 5, pp. 494–499.

    Article  Google Scholar 

  111. Nerobelov, G., Timofeyev, Yu., Virolainen, Y., Polyakov, A., Solomatnikova, A., Poberovskii, A., Kirner, O., Al-Subari, O., Smyshlyaev, S., and Rozanov, E., Measurements and modelling of total ozone columns near St. Petersburg, Russia, Remote Sens., 2022b, vol. 14, no. 16, p. 3944.

    Article  ADS  Google Scholar 

  112. Nevzorov, A.V., Bazhenov, O.E., Dolgii, S.I., Elnikov, A.V., and Sysoev, S.M., Analysis of annual variations in total ozone content and integrated aerosol backscattering coefficient in the stratosphere over Tomsk, Proc. SPIE, 2019, vol. 11208, pp. 112088P-1–112088P-4.

  113. Nevzorov, A.V., Bazhenov, O.E., El’nikov, A.V., and Loginov, V.A., Interaction between integral aerosol content in the stratosphere and total ozone content, in Optika Atmosfery i Okeana. Fizika atmosfery: Tezisy dokladov XXVII Mezhdunarodnogo simpoziuma (Atmospheric and Oceanic Optics. Abstracts of Presentations at the XVII International Symposium), Tomsk: IOA SO RAN, 2021a, p. 46.

  114. Nevzorov, A.V., Bazhenov, O.E., El’nikov, A.V., and Loginov, V.A., Comparison of time series of integrated aerosol content in the stratosphere and total ozone content, Atmos. Oceanic Opt., 2021b, vol. 34, no. 5, pp. 411–416.

    Article  ADS  CAS  Google Scholar 

  115. Nevzorov, A.V., Bazhenov, O.E., Elnikov, A.V., and Loginov, V.A., Interaction of integrated aerosol content in the stratosphere and total ozone content, Proc. SPIE, 2021c, vol. 11916, p. 1191629.

    Google Scholar 

  116. Nevzorov, A.A., Nevzorov, A.V., Kharchenko, O.V., and Makeev, A.P., Development of mobile lidar system for monitoring of tropospheric ozone and aerosol, Proc. SPIE, 2022, vol. 12341.

  117. Nikiforova, M.P., Vargin, P.N., and Zvyagintsev, A.M., Ozone anomalies over Russia in the winter-spring of 2015/2016, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 1, pp. 23–32.

    Article  Google Scholar 

  118. Obolkin, V., Potemkin, V., Khuriganova, O., and Khodzher, T., Ozone monitoring in the Baikal region (East Siberia): Spatiotemporal variability under the influence of air pollutants and site conditions, Atmosphere, 2022, vol. 13, p. 519.

    Article  ADS  CAS  Google Scholar 

  119. Obzor fonovogo sostoyaniya okruzhayushchei prirodnoi sredy na territorii stran SNG za 2021 god (Overview of the Background State of the Natural Environment in the CIS Countries for 2021), Moscow: Institut global’nogo klimata i ekologii imeni akademika Yu.A. Izraelya, 2022.

  120. Obzor sostoyaniya i zagryazneniya okruzhayushchei sredy v Rossiiskoi Federatsii za 2020 god (Overview of the Environmental State and Pollution in the Russian Federation for 2020), Moscow: Rosgidromet, 2021.

  121. Pankratova, N.V., Belikov, I.B., Belousov, V.A., Kopeikin, V.M., Skorokhod, A.I., Shtabkin, Yu.A., Malafeev, G.V., and Flint, M.V., Concentration and isotopic composition of methane, associated gases, and black carbon over Russian Arctic seas (shipborne measurements), Oceanology (Engl. Transl.), 2020, vol. 60, no. 5, pp. 593–602.

  122. Petkov, B.H., Vitale, V., Di Carlo, P., Drofa, O., Mastrangelo, D., Smedley, A.R.D., Solomatnikova, A.A., and Pavlova, K.G., An unprecedented arctic ozone depletion event during spring 2020 and its impacts across Europe, J. Geophys. Res.: Atmos., 2023, vol. 128, p. e2022JD037581.

  123. Pikulina, P., Mironova, I., Rozanov, E., and Karagodin, A., September 2017 solar flares effect on the middle atmosphere, Remote Sens., 2022, vol. 14, p. 2560.

    Article  ADS  Google Scholar 

  124. Polyakov, A.V., Timofeev, Yu.M., Virolainen, Ya.A., and Kozlov, D.A., Monitoring total ozone content in the atmosphere using Russian IKFS-2 instrument, Zh. Prikl. Spektrosk., 2019, vol. 86, no.4, pp. 597–601.

    Google Scholar 

  125. Polyakov, A., Virolainen, Ya., Nerobelov, G., Timofeyev, Yu., and Solomatnikova, A., Total ozone measurements using IKFS-2 spectrometer aboard Meteor M N2 satellite in 2019–2020, Int. J. Remote Sens., 2021, vol. 42, no. 22, pp. 8709–8733.

    Article  Google Scholar 

  126. Ponomarev, N.A., Elansky, N.F., Zakharov, V.I., and Verevkin, Ya.M., Optimization of pollutant emissions for air quality modeling in Moscow, Protsessy Geosredakh, 2019, no. 1, pp. 65–73.

  127. Ponomarev, N.A., Elansky, N.F., Kirsanov, A.A., Postylyakov, O.V., Borovskii, A.N., and Verevkin, Ya.M., Application of atmospheric chemical transport models to validation of pollutant emissions in Moscow, Atmos. Oceanic Opt., 2020, vol. 33, no. 2, pp. 362–371.

    Article  CAS  Google Scholar 

  128. Ponomarev, N., Yushkov, V., and Elansky, N., Air pollution in Moscow Megacity: Data fusion of the chemical transport model and observational network, Atmosphere, 2021, vol. 12, no. 3, p. 374.

    Article  ADS  CAS  Google Scholar 

  129. Postylyakov, O.V., Borovski, A.N., Davydova, M.A., and Makarenkov, A.A., Preliminary validation of high-detailed GSA/Resurs-P tropospheric NO2 maps with alternative satellite measurements and transport simulations, Proc. SPIE, 2019a, vol. 11152, p. 111520F.

    Google Scholar 

  130. Postylyakov, O.V., Borovski, A.N., Elansky, N.F., Davydova, M.A., Zakharova, S.A., and Makarenkov, A.A., Comparison of space high-detailed experimental and model data on tropospheric NO2 distribution, Proc. SPIE, 2019b, vol. 11208, p. 112082S.

    Google Scholar 

  131. Postylyakov, O.V., Borovski, A.N., Shukurov, K.A., Mukhartova, I.V., Davydova, M.A., and Makarenkov, A.A., On validation high-detail mapping of tropospheric NO2 using GSA/Resurs-P observations with simulated data, Proc. SPIE, 2020a, vol. 11531, p. 1153109

    Google Scholar 

  132. Postylyakov, O., Borovski, A., Kirsanov, A., Vasileva, A., and Elansky, N., Comparison of measured and simulated NO2 integral content in the lower troposphere in Moscow region, IOP Conf. Ser.: Earth Environ. Sci., 2020b, vol. 489, p. 012035.

  133. Radionov, V.F., Rusina, E.N., and Sibir, E.E., Long-term variability of integral and spectral transparency of the atmosphere at Mirny Observatory, Antarctica, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 2, pp. 74–80.

    Article  Google Scholar 

  134. Rakitin, V.S., Elansky, N.F., Skorokhod, A.I., Dzhola, A.V., Rakitina, A.V., Shilkin, A.V., Kirillova, N.S., and Kazakov, A.V., Long-term tendencies of carbon monoxide in the atmosphere of the Moscow megapolis, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 1, pp. 116–125.

    Article  Google Scholar 

  135. Rusina, E.N. and Bobrova, V.K., Optical density and transparency of the atmosphere, in Obzor sostoyaniya i zagryazneniya okruzhayushchei sredy v Rossiiskoi Federatsii za 2020 god (Overview of the Environmental State and Pollution in the Russian Federation for 2020), Moscow: Rosgidromet, 2021a, pp. 31–34.

  136. Rusina, E.N. and Bobrova, V.K., Optical density and transparency of the atmosphere of the Arctic region of the Russian Federation, in Obzor sostoyaniya i zagryazneniya okruzhayushchei sredy v Rossiiskoi Federatsii za 2020 god (Overview of the Environmental State and Pollution in the Russian Federation for 2020), Moscow: Rosgidromet, 2021b, pp. 184–185.

  137. Ryskin, V.G., Zinchenko, I.I., and Krasil’nikov, A.A., Stratospheric ozone distribution features from the results of simultaneous ground-based microwave measurements in Nizhni Novgorod and Kyrgyzstan, Russ. Meteorol. Hydrol., 2012, vol. 37, no. 10, pp. 659–665.

    Article  Google Scholar 

  138. Safronov, A.N., Shtabkin, Yu.A., Berezina, E.V., Rakitin, V.S., Skorokhod, A.I., Belikov, I.B., and Elansky, N.F., Isoprene, methyl vinyl ketone and methacrolein from TROICA-12 measurements and WRF-CHEM and GEOS-CHEM simulations in the Far East region, Atmosphere, 2019, vol. 10, p. 152.

    Article  ADS  CAS  Google Scholar 

  139. Savinykh, V.V., Elansky, N.F., and Gruzdev, A.N., Interannual variations and long-term trends in total ozone over the North Caucasus, Atmos. Environ., 2021a, vol. 251, p. 118252.

    Article  CAS  Google Scholar 

  140. Savinykh, V.V., Gruzdev, A.N., and Elansky, N.F., Trends and variations in total ozone over the North Caucasus, Proc. SPIE, 2021b, vol. 11916, p. 119162S.

    Google Scholar 

  141. Schmidt, H., Brasseur, G.P., Charron, M., Manzini, E., Giorgetta, M.A., Diehl, T., Fomichev, V.I., Kinnison, D., Marsh, D., and Walters, S., The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling, J. Clim., 2006, vol. 19, p. 3903.

    Article  ADS  Google Scholar 

  142. Senik, I.A., Elansky, N.F., Belikov, I.B., Lisitsyna, L.V., Galaktionov, V.V., and Kortunova, Z.V., Main patterns of the temporal variability of surface ozone in the region of the town of Kislovodsk at 870 and 2070 m above sea level, Izv., Atmos. Ocean. Phys., 2005, vol. 41, no. 1, pp. 67–79.

    Google Scholar 

  143. Shalygina, I.Yu., Kuznetsova, I.N., and Lapchenko, V.A., Ground-level ozone regime at Karadag station in Crimea according to 2009–2018 observations, Gidrometeorol. Issled. Prognozy, 2019, no. 2, pp. 102–113.

  144. Shtabkin, Yu.A., Moiseenko, K.B., Skorokhod, A.I., and Berezina, E.V., Natural and anthropogenic factors of seasonal variability of ground-level ozone in Central Siberia, in Prirodnye i antropogennye faktory sezonnoi izmenchivosti prizemnogo ozona v Tsentral’noi Sibiri, V Mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Fundamental’nye i prikladnye aspekty geologii, geofiziki i geoekologii s ispol’zovaniem sovremennykh informatsionnykh tekhnologii”. Sbornik trudov (Proceedings of the V International Scientific and Practical Conference “Fundamental and Applied Aspects of Geology, Geophysics, and Geoecology using Modern Information Technologies”), Maikop, 2019, pp. 291–298.

  145. Shtabkin, Yu.A., Moiseenko, K.B., Skorokhod, A.I., and Berezina, E.V., Seasonal variations in ground-level ozone in Northern Eurasia: Observations and numerical modeling, in Vserossiiskaya konferentsiya s mezhdunarodnym uchastiem, posvyashchennoi pamyati akademika A.M. Obukhova “Turbulentnost’, dinamika atmosfery i klimata”: Tezisy dokladov (All-Russian Conference with International Participation Commemorating Academician A.M. Obukhov “Turbulence, Dynamics of the Atmosphere and Climate”: Abstracts of Presentations), Moscow: Fizmatkniga, 2020a, p. 133.

  146. Shtabkin, Yu.A., Moiseenko, K.B., Skorokhod, A.I., Berezina, E.V., and Vasil’eva, A.V., Effect of the long-range transport of air masses on seasonal variations and regional balance of tropospheric ozone, in Vserossiiskaya konferentsiya s mezhdunarodnym uchastiem, posvyashchennoi pamyati akademika A.M. Obukhova “Turbulentnost’, dinamika atmosfery i klimata”: Tezisy dokladov (All-Russian Conference with International Participation Commemorating Academician A.M. Obukhov “Turbulence, Dynamics of the Atmosphere and Climate”: Abstracts of Presentations), Moscow: Fizmatkniga, 2020b, p. 134.

  147. Shukurov, K.A., Postylyakov, O.V., Borovski, A.N., Shuku-rova, L.M., Gruzdev, A.N., Elokhov, A.S., Savinykh, V.V., Mokhov, I.I., Semenov, V.A., Chkhetiani, O.G., and Senik, I.A., Study of transport of atmospheric admixtures and temperature anomalies using trajectory methods at the A.M. Obukhov Institute of Atmospheric Physics, IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 231, no. 1, p. 012048.

  148. Sibir, E.E., Radionov, V.F., and Rusina, E.N., Results of long-term observations of total ozone in Antarctica and over the Atlantic and Southern oceans, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 3, pp. 161–168.

    Article  Google Scholar 

  149. Sibir, E.E., Radionov, V.F., and Rusina, E.N., Database of hourly and daily amounts of total radiation at Russian Antarctic stations: Analysis of changes in total radiation for the entire period of observations in Antarctica, Probl. Arkt. Antarkt., 2021, vol. 67, pp. 249–260.

    Google Scholar 

  150. Sitnov, S.A. and Mokhov, I.I., Relationship of the ozone mini-hole over Siberia in January 2016 to atmospheric blocking, Dokl. Earth Sci., 2021, vol. 500, no. 1, pp. 772–776.

    Article  ADS  CAS  Google Scholar 

  151. Skorokhod, A.I., Rakitin, V.S., and Kirillova, N.S., Impact of COVID-19 pandemic preventing measures and meteorological conditions on the atmospheric air composition in Moscow in 2020, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 3, pp. 183–190.

    Article  Google Scholar 

  152. Smyshlyaev, S.P., Vargin, P.N., and Motsakov, M.A., Numerical modeling of ozone loss in the exceptional Arctic stratosphere winter–spring of 2020, Atmosphere, 2021, vol. 12, p. 1470.

    Article  ADS  CAS  Google Scholar 

  153. Solomatnikova, A.A., Romashkina, K.I., and Volokhina, D.Yu., Features of the state of ozone layer over the regions of the Russian Federation, in Obzor sostoyaniya i zagryazneniya okruzhayushchei sredy v Rossiiskoi Federatsii za 2019 god (Overview of the Environmental State and Pollution in the Russian Federation for 2019), Moscow: Rosgidromet 2020, pp. 36–39.

  154. Solomatnikova, A.A., Romashkina, K.I., and Volokhina, D.Yu., Features of the state of ozone layer over the regions of the Russian Federation, in Obzor sostoyaniya i zagryazneniya okruzhayushchei sredy v Rossiiskoi Federatsii za 2020 god (Overview of the Environmental State and Pollution in the Russian Federation for 2020), Moscow: Rosgidromet, 2021, pp. 36–39.

  155. Solomatnikova, A.A., Volokhina, D.Yu., and Zhukova, M.P., Features of the state of ozone layer over the regions of the Russian Federation, in Obzor sostoyaniya i zagryazneniya okruzhayushchei sredy v Rossiiskoi Federatsii za 2021 god (Overview of the Environmental State and Pollution in the Russian Federation for 2021), Moscow: Rosgidromet, 2022a, pp. 36–39.

  156. Solomatnikova, A.A., Volokhina, D.Yu., and Zhukova, M.P., State of the ozone layer over the Arctic regions of the Russian Federation, in Obzor sostoyaniya i zagryazneniya okruzhayushchei sredy v Rossiiskoi Federatsii za 2021 god (Overview of the Environmental State and Pollution in the Russian Federation for 2021), Moscow: Rosgidromet, 2022b, pp. 182–183.

  157. Stepanov, E.V., Data parallel processing in block streams for analysis of long-term series of ozone content in ground atmosphere, Laser Phys., 2022, vol. 32, no. 8, p. 084011.

    Article  ADS  Google Scholar 

  158. Stepanov, E. and Kotelnikov, S., Tropospheric ozone as a risk factor for crop production in central regions of Russia, IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 390, p. 012033.

  159. Stepanov, E.V., Andreev, V.V., Konoval’tseva, L.V., and Kasoev, S.G., Surface ozone in the atmosphere of Moscow during the COVID-19 pandemic, Atmos. Oceanic Opt., 2022a, vol. 35, no. 8, pp. 732–740.

    Article  ADS  CAS  Google Scholar 

  160. Stepanov, E.V., Andreev, V.V., Chuprov, D.V., and Ivashkin, V.T., Correlation of the frequency of infections and mortality from COVID-19 with abnormally high ozone content in the surface atmosphere of Moscow in summer 2021, Ross. Zh. Gastroenterol., Gepatol., Koloproktol., 2022b, vol. 32, no. 3, pp. 18–22.

    Google Scholar 

  161. Sukhodolov, T., Egorova, T., Stenke, A., Ball, W.T., Brodowsky, C., Chiodo, G., Feinberg, A., Friedel, M., Karagodin-Doyennel, A., Peter, T., Sedlacek, J., Vattioni, S., and Rozanov, E., Atmosphere–ocean–aerosol–chemistry–climate model SOCOLv4.0: Description and evaluation, Geosci. Model Dev., 2021, vol. 14, pp. 5525–5560.

    Article  ADS  CAS  Google Scholar 

  162. Tcydypov, V.V., Zayakhanov, A.S., Zhamsueva, G.S., Dementeva, A.L., Balzhanov, T.S., Sungrapova, I.P., and Naguslaev, S.A., Features of the spatial distribution of gaseous impurities in the atmosphere of the south-eastern coast of Lake Baikal by route measurements in the summer period 2018–2019, Limnol. Freshwater Biol., 2020, no. 4, pp. 892–893.

  163. Tentyukov, M.P., Lyutoev, V.P., Belan, B.D., Simonenkov, D.V., and Golovataya, O.S., Ultraviolet radiation detector based on artificial periclase nanocrystals (MgO), Atmos. Oceanic Opt., 2022, vol. 35, no. 1, pp. 89–96.

    Article  ADS  CAS  Google Scholar 

  164. Thorp, T., Arnold, S.R., Pope, R.J., Spracklen, D.V., Conibear, L., Knote, C., Arshinov, M., Belan, B., Asmi, E., Laurila, T., Skorokhod, A.I., Nieminen, T., and Petäjä, T., Late-spring and summertime tropospheric ozone and NO2 in western Siberia and the Russian Arctic: Regional model evaluation and sensitivities, Atmos. Chem. Phys., 2021, vol. 21, pp. 4677–4697.

    Article  ADS  CAS  Google Scholar 

  165. Timofeev, Yu.M., Nerobelov, G.M., Polyakov, A.V., and Virolainen, Ya.A., Satellite monitoring of the ozonosphere, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 12, pp. 849–855.

    Article  Google Scholar 

  166. Trifonova-Yakovleva, A.M., Gromov, S.A., Khodzher, T.V., Potemkin, V.L., and Obolkin, V.A., On the possibility of using the GOME2 high resolution ozone profiles for assessment of near-surface ozone concentrations, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2017, vol. 14, no. 5, pp. 239–247.

    Article  Google Scholar 

  167. Tsvetkova, N.D., Vyzankin, A.S., Vargin, P.N., Lukyanov, A.N., and Yushkov, V.A., Investigation and forecast of sudden stratospheric warming events with chemistry climate model SOCOL, IOP Conf. Ser.:, Earth Environ. Sci., 2020, vol. 606, p. 012062.

  168. Tsvetkova, N.D., Vargin, P.N., Luk’yanov, A.N., Kiryushov, B.M., Yushkov, V.A., and Khattatov, V.U., Studying chemical ozone depletion and dynamic processes in the Arctic stratosphere in the winter 2019/2020, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 9, pp. 606–615.

    Article  Google Scholar 

  169. Vargin, P.N. and Kiryushov, B.M., Major sudden stratospheric warming in the Arctic in February 2018 and its impacts on the troposphere, mesosphere, and ozone layer, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 2, pp. 112–123.

    Article  Google Scholar 

  170. Vargin, P.N., Kostrykin, S.V., Rakushina, E.V., Volodin, E.M., and Pogorel’tsev, A.I., Study of the variability of spring breakup dates and Arctic stratospheric polar vortex parameters from simulation and reanalysis data, Izv., Atmos. Ocean. Phys., 2020a, vol. 56, no. 5, pp. 458–469.

    Article  Google Scholar 

  171. Vargin, P.N., Nikiforova, M.P., and Zvyagintsev, A.M., Variability of the Antarctic ozone anomaly in 2011–2018, Russ. Meteorol. Hydrol., 2020b, vol. 45, no. 2, pp. 63–73.

    Article  Google Scholar 

  172. Vargin, P.N., Kostrykin, S.V., Volodin, E.M., Pogoreltsev, A.I., and Wei, K., Arctic stratosphere circulation changes in the 21st century in simulations of INM CM5, Atmosphere, 2022, vol. 13, p. 25.

    Article  ADS  CAS  Google Scholar 

  173. Virolainen, Ya.A., Polyakov, A.V., and Timofeev, Yu. M., Analysis of the variability of stratospheric gases near St. Petersburg using ground-based spectroscopic measurements, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 2, pp. 148–158.

    Article  Google Scholar 

  174. Wang, Y., Apituley, A., Bais, A., Beirle, S., Benavent, N., Borovski, A., Bruchkouski, I., Chan, K.L., Donner, S., Drosoglou, T., Finkenzeller, H., and Friedrich, M.M., Frieß, U., Garcia-Nieto D., Gomez-Martin L., et al., Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign, Atmos. Meas. Tech., 2020, vol. 13, pp. 5087–5116.

    Article  CAS  Google Scholar 

  175. Zakharova, S., Davydova, M., Borovski, A., Shukurov, K., Mukhartova, Y., Makarenkov, A., and Postylyakov, O., Experiments on high-detailed mapping of tropospheric NO2 using GSA/Resurs-P observations: Results, validation with models and measurements, estimation of emission power, Proc. SPIE, 2021, vol. 11859, p. 1185905.

    Google Scholar 

  176. Zakharova, S.A., Elansky, N.F., Verevkin, Y.M., and Davydova, M.A., Determination of emissions in the city by the rate of change in the integral content of impurities in the atmospheric boundary layer, Dokl. Earth Sci., 2022, vol. 504, no. 1, pp. 326–331.

    Article  ADS  CAS  Google Scholar 

  177. Zayakhanov, A.S., Zhamsueva, G.S., Tsydypov, V.V., Balzh-anov, T.S., Balin, Yu.S., Penner, I.E., Kokhanenko, G.P., and Nasonov, S.V., Specific features of transport and transformation of atmospheric aerosol and gas admixtures in the coastal zone of lake Baikal, Atmos. Oceanic Opt., 2019a, vol. 32, no. 2, pp. 158–164.

    Article  Google Scholar 

  178. Zayakhanov, A.S., Zhamsueva, G.S., Tcydypov, V.V., Balzhanov, T.S., Dementeva, A.L., and Khodzher, T.V., Investigation of transport and transformation of tropospheric ozone in terrestrial ecosystems of the coastal zone of Lake Baikal, Atmosphere, 2019b, vol. 10, p. 739.

    Article  ADS  CAS  Google Scholar 

  179. Zhamsueva, G., Zayakhanov, A., Tcydypov, V., Dementeva, A., and Balzhanov, T., Spatial–temporal variability of small gas impurities over Lake Baikal during the forest fires in the summer of 2019, Atmosphere, 2021, vol. 12, p. 188.

    Google Scholar 

  180. Zhamsueva, G., Zayakhanov, A., Khodzher, T., Tcydypov, V., Balzhanov, T., and Dementeva, A., Studies of the dispersed composition of atmospheric aerosol and its relationship with small gas impurities in the near-water layer of Lake Baikal based on the results of ship measurements in the summer of 2020, Atmosphere, 2022, vol. 13, p. 139.

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was supported by the state assignments from People’s Friendship University of Russia; the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences; the Central Aerological Observatory; the Institute of Atmospheric Physics, Russian Academy of Sciences; the Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences; the Institute of General Physics, Russian Academy of Sciences; the Hydrometeorological Center of Russia; Institute of Applied Physics, Russian Academy of Sciences; the Limnological Institute, Siberian Branch, Russian Academy of Sciences; St. Petersburg State University, the Voeikov Main Geophysical Observatory; the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2021-583; and the Russian Science Foundation, projects nos. 20-17-00200 and 22-12-00064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Belan.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, V.V., Bazhenov, O.E., Belan, B.D. et al. Russian Studies of Atmospheric Ozone and Its Precursors in 2019–2022. Izv. Atmos. Ocean. Phys. 59 (Suppl 3), S437–S461 (2023). https://doi.org/10.1134/S0001433823150021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823150021

Keywords:

Navigation