Abstract
The differences and similarity of the chemical composition (ions, trace elements, and polyaromatic hydrocarbons (PAHs)) of the near-water atmospheric aerosol collected in summer 2021 along the expedition routes of the R/V Akademik Mstislav Keldysh in the region of the Kara Sea (the second stage of cruise 83, from June 18 to July 8, 2021), in the Barents Sea, and in the Norwegian-Greenland Basin (cruise 84, from July 24 to August 26) are revealed.
This is a preview of subscription content,
to check access.


REFERENCES
Barrie, L.A., Fisher, D., and Koerner, R.M., Twentieth century trends in Arctic air pollution revealed by conductivity and acidity observations in snow and ice in the Canadian high Arctic, Atmos. Environ., 1985, vol. 19, vol. 2055–2063.
Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., DeAngelo, B.J., Flanner, M.G., Ghan, S., Karcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.K., Sarofim, M.C., Schultz, M.G., et al., Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res.: Atmos., 2013, vol. 118, pp. 5380–5552. https://doi.org/10.1002/jgrd.5017
Davidson, C.I., Harrington, J.R., Stephenson, M.J., Monaghan, M.C., Pudykiewicz, J., and Schell, W.R., Radioactive cesium from the Chernobyl accident in the Greenland Ice Sheet, Science, 1987, vol. 237, no. 4815, pp. 633–634. https://doi.org/10.1126/science.3603043
Ekologicheskii monitoring: Metodicheskie ukazaniya k samostoyatel’noi rabote studentov po napravleniyu “Tekhnosfernaya bezopasnost’” (20.03.01) (Environmental Monitoring: Methodological Guides for Students’ Independent Work in the Field of "Technosphere Safety” (20.03.01)), Mavrin, R.M., Pademirova, D.A., and Kharlyamov, Eds., Naberezhnye Chelny: INEKA, 2015.
Flint, M.V., Poyarkov, S.G., Rimsky-Korsakov, N.A., and Miroshnikov, A.Yu., Ecosystems of the Siberian Arctic Seas–2021: Ecosystem of the Kara Sea in the period of seasonal ice melting (cruise 83 of the R/V Akademik Mstislav Keldysh), Oceanology (Engl. Transl.), 2022, vol. 62, no. 1, pp. 133–135. https://doi.org/10.1134/S0001437022010052
Ginzburg, A.S., Gubanova, D.P., and Minashkin, V.M., Influence of natural and anthropogenic aerosols on global and regional climate, Russ. J. Gen. Chem., 2009, vol. 52, no. 9, pp. 2062–2070.
Golobokova, L.P., Khodzher, T.V., Chernov, D.G., Sidorova, O.R., Khuriganova, O.I., Onischuk, N.A., Zhuchenko, N.A., and Marinaite, I.I., Chemical composition of the near-surface atmospheric aerosol in Barentsburg (Svalbard) based on the long-term observations, Led Sneg, 2020a, vol. 60, no. 1, pp. 85–97. https://doi.org/10.31857/S2076673420010025
Golobokova, L.P., Khodzher, T.V., Izosimova, O.N., Zenkova, P.N., Pochyufarov, A.O., Khuriganova, O.I., Onischuk, N.A., Marinaite, I.I., Pol’kin, V.V., Radionov, V.F., Sakerin, S.M., Lisitsin, A.P., and Shevchenko, V.P., Chemical composition of atmospheric aerosol in the Arctic region and adjoining seas along the routes of marine expeditions in 2018–2019, Atmos. Oceanic Opt., 2020b, vol. 33, no. 5, pp. 480–489.
Gorshkov, A.G., Izosimova, O.N., Kustova, O.V., Marinaite, I.I., Galachyants, Y.P., Sinyukovich, V.N., and Khodzher, T.V., Wildfires as a source of PAHs in surface waters of background areas (Lake Baikal, Russia), Water, 2021, vol. 13, no. 2636, pp. 1–16. https://doi.org/10.3390/w13192636
Group of experts on climate change impacts and adaptation for transport networks and nodes seventeenth session, Geneva, 2015. https://unece.org/7th-session-22. Accessed May 20, 2022.
Heintzenberg, J., Hansson, H.C., and Lannefors, H., The chemical composition of Arctic haze at Ny-Ålesund, Spitsbergen, Tellus, 1981, vol. 33, no. 2, pp. 162–171.
Humpert, M., IMO moves forward with ban of Arctic HFO but exempts some vessels until 2029, 2020. https:// www.highnorthnews.com/en/imo-moves-forward-ban-arctic-hfo-exempts-some-vessels-until-2029. Accessed May 20, 2022.
Ivlev, L.S., Khimicheskii sostav i struktura atmosfernykh aerozolei (Chemical Composition and Structure of Atmospheric Aerosols), Leningrad: LGU, 1982.
Keene, W.C., Pszenny, A.A.P., Gallowa, J.N., and Hawley, M.E., Sea-salt corrections and interpretation of constituent ratios in marine precipitation, J. Geophys. Res., 1986, vol. 91, no. D6, pp. 6647–6658.
Kravchishina, M.D., Klyuvitkin, A.A., Volodin, V.D., Glukhovets, D.I., Dubinina, E.O., Kruglinskii, I.A., Kudryavtseva, E.A., Matul, A.G., Novichkova, E.A., Politova, N.V., Savvichev, A.S., Silkin, V.A., and Starodymova, D.P., Systems research of sedimentation in the European Arctic during the 84th cruise of the research vessel Akademik Mstislav Keldysh, Oceanology (Engl. Transl.), 2022, vol. 62, no. 4, pp. 572–574. https://doi.org/10.1134/S0001437022040063
Meleshko, V.P., Kattsov, V.M., Mirvis, V.M., Baidin, A.V., Pavlova, T.V., and Govorkova, V.A., Is there a link between Arctic Sea ice loss and increasing frequency of extremely cold winters in Eurasia and North America? Synthesis of current research, Russ. Meteorol Hydrol., 2018, vol. 43, no. 11, pp. 743–755. https://doi.org/10.3103/S1068373918110055
Millero, F.J., Chemical Oceanography, Boca Raton, Fla., CRC Press, 2016.
Morillo, E., Romero, A.S., Maqueda, C., Madrid, L., Ajmone-Marsan, F., Grčman, H., Davidson, C.M., Hursthouse, A.S., and Villaverde, J., Soil pollution by PAHs in urban soils: A comparison of three European cities, J. Environ. Monit. Assess., 2007, vol. 9, no. 9, pp. 1001–1008. https://doi.org/10.1039/B705955H
Nadubovich, Yu.A., Polarization effects during flashes of optical radiation, radiant aurora forms and twilight, in Fizicheskie yavleniya v atmosphere vysokikh shirot (Physical Phenomena in the High-Latitude Atmosphere), Yakutsk: AN SSSR, 1977, pp. 40–49.
Predel’no dopustimye kontsentratsii (PDK) zagryaznyayushchikh veshchestv v atmosfernom vozdukhe gorodskikh i sel’skikh poseleniyi: gigienicheskiye normativy, s izmeneniyami, utverzhdennye postanovleniem glavnogo gosudarstvennogo sanitarnogo vracha Rossiyskoy Federatsii 31.05.2018 no. 37 (Maximum Allowable Concentrations (MAC) of Pollutants in the Atmospheric Air of Urban and Rural Settlements: Hygienic Standards Approved by Decree of the Chief Health Officer of the Russian Federation, as Amended May 31, 2018, no. 37), Moscow: FTsGiE Rospotrebnadzora, 2019.
Rusina, E.N. and Radionov, V.F., Estimation of “preindustrial” optical depth of the atmosphere in Arctic polar haze and recent contribution of anthropogenic emissions, Meteorol. Gidrol., 2002, no. 5, pp. 35–39.
Sakerin, S.M., Golobokova, L.P., Kabanov, D.M., Kozlov, V.S., Pol’kin, V.V., Radionov, V.F., and Chernov, D.G., Comparison of average aerosol characteristics in neighboring Arctic regions, Atmos. Oceanic Opt., 2019, vol. 32, no. 1, pp. 33–40. https://doi.org/10.1134/S1024856019010147
Semenov, V.A., Martin, T., Behrens, L.K., Latif, M., and Astaf’eva, E.S., Arctic sea ice area changes in CMIP3 and CMIP5, Led Sneg, 2017, vol. 57, no. 1, pp. 77–100. https://doi.org/10.15356/2076-6734-2017-1-77-107
Shaw, G.E., The Arctic haze phenomenon, Bull. Am. Meteorol. Soc., 1995, vol. 76, no. 12, pp. 2403–2414.
Shevchenko, V.P., Vliyanie aerozolei na okruzhayushchuyu sredu i morskoe osadkonakoplenie v Arktike (Aerosol Impact on the Environment and Marine Sediment Accumulation in the Arctic), Moscow: Nauka, 2006.
Shevchenko, V.P., Lisitsyn, A.P., Vinogradova, A.A., Serova, V.V., and Stein, R., Aerosol fluxes on the Arctic Ocean surface and their role in the sedimentation and formation of the natural environment of the Arctic, in Opyt sistemnykh okeanologicheskikh issledovanii v Arktike (History of Systemic Oceanographic Research in the Arctic), Moscow: Nauchnyi mir, 2001, pp. 385-393.
Shevchenko, V.P., Golobokova, L.P., Sakerin, S.M., Lisitsyn, A.P., Kabanov, D.M., Novigatskii, A.N., Panchenko, M.V., Politova, N.V., Polkin, V.V., Popovicheva, O.B., and Khodzher, T.V., Scattered sedimentation over the Barents Sea, in Sistema Barentseva morya (The Barents Sea System), Lisitsyn, A.P., Ed., Moscow: GEOS, 2021, pp. 127–142.
Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., and Ngan, F., NOAA’s HYSPLIT atmospheric transport and dispersion modeling system, Bull. Am. Meteorol. Soc., 2015, vol. 96, pp. 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1
Wei, L., Mosley-Thompson, E., Gabrielli, P., Thompson, L.G., and Barbante, C., Synchronous deposition of volcanic ash and sulfate aerosols over Greenland in 1783 from the Laki eruption (Iceland), Geophys. Res. Lett., 2008, vol. 35, p. L16501. https://doi.org/10.1029/2008GL035117
Xu, G. and Gao, Y., Atmospheric trace elements in aerosols observed over the Southern Ocean and coastal East Antarctica, Polar Res., 2014, vol. 33, p. 23973. https://doi.org/10.3402/polar.v33.23973
ACKNOWLEDGMENTS
We are grateful to the crew of the R/V Akademik Mstislav Keldysh for help in carrying out the expedition work and to the staff of the Air Resources Laboratory of the American National Oceanic and Atmospheric Administration (NOAA) for providing the opportunity to perform trajectory analysis using the HYSPLIT model.
Funding
This work was supported by the Russian Science Foundation, project no. 21-77-20025 “Atmospheric Aerosol in High-Latitude Regions of the World Ocean: Physicochemical Composition, Geographic Distribution, Main Sources, and Variability Factors.”
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflicts of interest.
Additional information
Translated by A. Nikol’skii
Rights and permissions
About this article
Cite this article
Golobokova, L., Kruglinsky, I., Pochufarov, A. et al. Chemical Composition of Atmospheric Aerosol in Arctic Regions in Summer 2021. Izv. Atmos. Ocean. Phys. 59 (Suppl 1), S70–S80 (2023). https://doi.org/10.1134/S000143382313008X
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S000143382313008X