Skip to main content
Log in

Preservation of the Climatic Signal in the Old Ice Layers at the Dome B Area (Antarctica)

  • GLACIERS AND ICE SHEETS
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In this work we present the results of numerical modeling of the age and temperature distribution in ice layers at the Dome B site (79.02° S, 93.69° E, altitude 3807 m a.s.l., ice thickness about 2.5 km), located 300 km west of the Russian Antarctic station Vostok. Dome B is situated on the onset of the ice flow line passing through the deep 5G borehole, and it is considered one of the most promising places to search for and study the earth’s oldest ice (with an age reaching 1.5 Ma). According to our calculations, all realistic scenarios show the ice age at 60 m above the ice base to be considerably older than 1 Ma, and the glacier base temperature is well below the pressure melting point (–1.8°С for pressure = 23 MPa). For the most likely scenario (accumulation rate 1.8 g/(cm2 year), effective ice surface temperature –64°С, and geothermal heat flux 60 mW/m2), the ice age is 1.4 Ma and the basal temperature is about –13°С, which is close to the earlier predictions from a 2D model. The maximum estimate of the diffusion length in the old ice (for the scenario in which the basal temperature reaches the melting point and in which 30% of excess diffusion is taken into account) is 5.2 cm. In 1.4-Ma-old ice, a 40-ka climatic cycle is squeezed into a 290-cm-thick ice layer. For this ratio of wavelength and diffusion length, the climatic signal attenuation (ratio between the signal amplitude after and before diffusive smoothing) is 0.6%. Thus, due to the relatively low ice temperature here, we may expect a nearly undisturbed climatic curve in the old ice core that will be drilled one day at Dome B. At the same time, shorter oscillations with wavelengths of <1500 years will be totally erased by diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bazin, L., Landais, A., Lemieux-Dudon, B., Toyé Mahamadou Kele, H., Veres, D., Parrenin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V., Loutre, M.-F., Raynaud, D., Vinther, B., Svensson, A., Rasmussen, et al., An optimized multi-proxy, multisite Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka, Clim. Past, 2013, vol. 9, pp. 1715–1731.

    Article  Google Scholar 

  2. Bereiter, B., Fischer, H., Schwander, J., and Stocker, T.F., Diffusive equilibration of N2, O2 and CO2 mixing ratios in a 1.5-million-years-old ice core, Cryosphere, 2014, vol. 8, pp. 245–256. https://doi.org/10.5194/cp-2020-52

    Article  Google Scholar 

  3. Berends, C.J., de Boer, B., and van de Wal, R.S.W., Reconstructing the evolution of ice sheets, sea level and atmospheric CO2 during the past 3.6 million years, Clim. Past Disc., 2020, pp. 1–22. https://doi.org/10.5194/cp-2020-52.

  4. Burton-Johnson, A., Dziadek, R., and Martin, C., Review article: Geothermal heat flow in Antarctica: Current and future directions, Cryosphere, 2020, vol. 14, pp. 3843–3873. https://doi.org/10.5194/tc-14-3843-2020

    Article  Google Scholar 

  5. Ekaykin, A.A., Lipenkov, V.Ya., Veres, A.N., Kozachek, A.V., and Skakun, A.A., On the possibility to restore the climatic signal in the disturbed record of stable water isotope content in the old (0.4–1.2 Ma) Vostok ice (Central Antarctica), Led Sneg, 2019, vol. 59, no. 4, pp. 437–451. https://doi.org/10.15356/2076-6734-2019-4-463

    Article  Google Scholar 

  6. Ekaykin, A.A., Bolshunov, A.V., Lipenkov, V.Ya., Scheinert, M., Eberlein, L., Brovkov, E., Popov, S.V., and Turkeev, A.V., The first glaciological investigations at Ridge B, central East Antarctica, Antarct. Sci., 2021, vol. 33, no. 4, pp. 418–427.

    Article  Google Scholar 

  7. Fischer, H., Severinghaus, J., Brook, E., Wolff, E., Albert, M., Alemany, O., Arthern, R., Bentley, C., Blankenship, D., Chappellaz, J., Creyts, T., Dahl-Jensen, D., Dinn, M., Frezzotti, M., Fujita, S., et al., Where to find 1.5 million yr old ice for the IPICS “Oldest-Ice” ice core, Clim. Past, 2013, vol. 9, pp. 2489–2505.

    Article  Google Scholar 

  8. Fretwell, L.O., Pritchard, H.D., Vaughan, D.G., Bamber, J.L., Barrand, N.E., Bell, R., Bianchi, C., Bingham, R.G., Blankenship, D.D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A.J., Corr, H.F.J., et al., Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica, Cryosphere, 2013, vol. 7, pp. 375–393. https://doi.org/10.5194/tc-7-375-2013

    Article  Google Scholar 

  9. Hobbs, P.V., Ice Physics, Oxford: Clarendon Press, 1974.

    Google Scholar 

  10. Johnsen, S.J., Stable isotope homogenization of polar firn and ice, in Isotopes and Impurities in Snow and Ice, 1977, vol. 118, pp. 210–219.

  11. Jouzel, J., Vaikmae, R., Petit, J.R., Martin, M., Duclos, Y., Stievenard, M., Lorius, C., Toots, M., Melieres, M.A., Burckle, L.H., Barkov, N.I., and Kotlyakov, V.M., The two-step shape and timing of the last deglaciation in Antarctica, Clim. Dyn., 1995, vol. 11, pp. 151–161.

    Article  Google Scholar 

  12. Kennicutt, M.C. II, Chown, S.L., Cassano, J.J., Liggett, D., Peck, L.S., Massom, R., Rintoul, S.R., Storey, J., Vaughan, D.G., Wilson, T.J., Allison, I., Ayton, J., Badhe, R., Baeseman, J., Barrett, P.J., et al., A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond, Antarct. Sci., 2014, pp. 1–16. https://doi.org/10.1017/S0954102014000674

  13. Lipenkov, V.Ya. and Ekaykin, A.A., Searching for Antarctica’s oldest ice, Led Sneg, 2018, vol. 58, no. 2, pp. 255–260. https://doi.org/10.15356/2076-6734-2018-2-255-260

    Article  Google Scholar 

  14. Lipenkov, V.Ya., Salamatin, A.N., Jiang, W., Ritterbusch, F., Bender, M.L., Orsi, A., Landais, A., Uchida, T., Ekaykin, A.A., Raynaud, D., Yang, G.-M., Lu, Z.-T., and Chappelaz, J., New ice dating tools reveal 1.2 Mz old meteoric ice near the base of the Vostok ice core, Geophys. Res. Abstr., 2019, vol. 21, EGU2019-8505.

    Google Scholar 

  15. Lisiecki, L.E. and Raymo, M.E., A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 2005, vol. 20 (PA1003), pp 1–17. https://doi.org/10.1029/2004PA001071

    Article  Google Scholar 

  16. Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., et al., Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 1999, vol. 399, pp. 429–436.

    Article  Google Scholar 

  17. Pol, K., Masson-Delmotte, V., Johnsen, S., Bigler, M., Cattani, O., Durand, G., Falourd, S., Jouzel, J., Minster, B., Parrenin, F., Ritz, C., Steen-Larsen, H.C. and, Stenni, B., New MIS 19 EPICA Dome C high resolution deuterium data: Hints for a problematic preservation of climate variability at sub-millennial scale in the ‘oldest ice’, Earth Planet. Sci. Lett., 2010, vol. 298, pp. 95–103.

    Article  Google Scholar 

  18. Salamatin, A.N., Tsyganova, E.A., Popov, S.V., and Lipenkov, V.Ya., Ice flow line modeling in ice core data interpretation: Vostok Station (East Antarctica), in Physics of Ice Core Records, Hondoh, T., Ed., Sapporo, Japan: Hokkaido Univ. Press, 2009, pp. 167–194.

    Google Scholar 

  19. Skakun, A.A., Lipenkov, V.Ya., Parrenin, F., Ritz, C., and Popov, S.V., On the availability of old meteoric ice in the vicinity of Dome B, East Antarctica, Geophys. Res. Abstr., 2019, vol. 21, EGU2019-11315.

    Google Scholar 

  20. Slack, G.A., Thermal conductivity of ice, Phys. Rev., 1980, vol. 22, no. 6, pp. 3065–3071.

    Article  Google Scholar 

  21. Tison, J.-L., de Angelis, M., Littot, G., Wolff, E., Fischer, H., Hansson, M., Bigler, M., Udisti, R., Wegner, A., Jouzel, J., Stenni, B., Johnson, S., Masson-Delmotte, V., Landais, A., Lipenkov, V., et al., Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core, Cryosphere, 2015, vol. 9, pp. 1633–1648. https://doi.org/10.5194/tc-9-1633-2015

    Article  Google Scholar 

  22. Veres, A.N., Ekaykin, A.A., Lipenkov, V.Ya., Turkeev, A.V., and Khodzer, T.V., First data on the climate variability in the vicinity of Vostok Station (central Antarctica) over the past 2,000 years based on the study of a snow-firn core, 2020, vol. 66, no. 4, pp. 482–500. https://doi.org/10.30758/0555-2648-2020-66-4-482-500

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 18-17-00110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ekaykin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekaykin, A.A., Lipenkov, V.Y. & Tchikhatchev, K.B. Preservation of the Climatic Signal in the Old Ice Layers at the Dome B Area (Antarctica). Izv. Atmos. Ocean. Phys. 59 (Suppl 1), S1–S7 (2023). https://doi.org/10.1134/S0001433823130066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823130066

Keywords:

Navigation