Skip to main content
Log in

Influence of Quasi-Biennial Oscillation on the Dynamics of Stratospheric Polar Vortices According to Data of Satellite Observations

  • PHYSICAL BASES AND METHODS OF STUDYING THE EARTH FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The lifetime of polar ozone anomalies depends on the phase of quasi-biennial oscillation (QBO). The QBO determines the location of the subtropical critical wind line, which influences the propagation of planetary waves into the stratosphere. As a result, during the westerly phase of the QBO, the strengthening of a polar vortex is observed, while, during the easterly phase, its weakening is seen, which manifests itself in the dates, duration, and intensity of the stratospheric ozone depletion. Polar ozone anomalies occur inside a strong polar vortex from the end of winter up to spring as a result of the occurrence of heterogeneous and photochemical ozone depletion reactions in the presence of solar radiation. The effect of QBO phases at different isobaric levels on the dynamics of the stratospheric polar vortices are studied on the basis of satellite data from NASA’s Goddard Space Flight Center (GSFC). It is shown that the QBO at the pressure level of 30 hPa has a predominant effect on the dynamics of polar vortices. In the dynamics of the Antarctic polar vortex, it is observed from September to December, especially in October and November; in the dynamics of the Arctic polar vortex, it is pronounced throughout the entire period of its existence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Ageyeva, V.Yu., Gruzdev, A.N., Elokhov, A.S., Mokhov, I.I., and Zueva, N.E., Sudden stratospheric warmings: statistical characteristics and influence on NO2 and O3 total contents, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 5, pp. 477–486. https://doi.org/10.1134/S0001433817050036

    Article  Google Scholar 

  2. Baldwin, M.P., Gray, L.J., Dunkerton, T.J., Hamilton, K., Haynes, P.H., Randel, W.J., Holton, J.R., Alexander, M.J., Hirota, I., Horinouchi, T., Jones, D.B.A., Kinnersley, J.S., Marquardt, C., Sato, K., and Takahashi, M., The quasi-biennial oscillation, Rev. Geophys., 2001, vol. 39, no. 2, pp. 179–229. https://doi.org/10.1007/978-1-4020-8217-7_4

    Article  ADS  Google Scholar 

  3. Calvo, N., Giorgetta, M.A., and Pena-Ortiz, C., Sensitivity of the boreal winter circulation in the middle atmosphere to the quasi-biennial oscillation in maecham5 simulations, J. Geophys. Res., 2007, vol. 112, no. 10, p. D10124. https://doi.org/10.1029/2006JD007844

    Article  ADS  Google Scholar 

  4. Camp, C.D. and Tung, K.-K., The influence of the solar cycle and QBO on the late-winter stratospheric polar vortex, J. Atmos. Sci., 2007, vol. 64, no. 4, pp. 1267–1283. https://doi.org/10.1175/JAS3883.1

    Article  ADS  Google Scholar 

  5. Chen, W. and Wei, K., Interannual variability of the winter stratospheric polar vortex in the northern hemisphere and their relations to QBO and ENSO, Adv. Atmos. Sci., 2009, vol. 26, no. 5, pp. 855–863. https://doi.org/10.1007/s00376-009-8168-6

    Article  Google Scholar 

  6. Finlayson-Pitts, B.J. and Pitts, J.N., Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications, California: Academic Press, 2000.

    Google Scholar 

  7. Ford, E.A.K., Hibbins, R.E., and Jarvis, M.J., QBO effects on Antarctic mesospheric winds and polar vortex dynamics, Geophys. Res. Lett., 2009, vol. 36, no. 20, p. L20801. https://doi.org/10.1029/2009GL039848

    Article  ADS  Google Scholar 

  8. Frol’kis, V.A., Karol’, I.L., and Kiselev, A.A., Is there a link between QBO and changes in the ozone content and temperature in Antarctica?, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 2021. № 601. S. 19-34.

    Google Scholar 

  9. Garfinkel, C.I. and Hartmann, D.L., Effects of the El Niño-Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere, J. Geophys. Res., 2007, vol. 112, no. 19, p. D19112. https://doi.org/10.1029/2007JD008481

    Article  ADS  Google Scholar 

  10. Garfinkel, C.I., Shaw, T.A., Hartmann, D.L., and Waugh, D.W., Does the holton-tan mechanism explain how the quasi-biennial oscillation modulates the arctic polar vortex?, J. Atmos. Sci., 2012, vol. 69, no. 5, pp. 1713–1733. https://doi.org/10.1175/JAS-D-11-0209.1

    Article  ADS  Google Scholar 

  11. Gelaro, R., McCarty, W., Suarez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., Darmenov, A., Bosilovich, M.G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, et al., The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), J. Clim., 2017, vol. 30, no. 14, pp. 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1

  12. Haigh, J.D. and Roscoe, H.K., The final warming date of the Antarctic polar vortex and influences on its interannual variability, J. Clim., 2009, vol. 22, no. 22, pp. 5809–5819. https://doi.org/10.1175/2009JCLI2865.1

    Article  ADS  Google Scholar 

  13. Hampson, J. and Haynes, P., Influence of the equatorial QBO on the extratropical stratosphere, J. Atmos. Sci., 2006, vol. 63, no. 3, pp. 936–951. https://doi.org/10.1175/JAS3657.1

    Article  ADS  Google Scholar 

  14. Hitchman, M.H. and Huesmann, A.S., Seasonal influence of the quasi-biennial oscillation on stratospheric jets and Rossby wave breaking, J. Atmos. Sci., 2009, vol. 66, no. 4, pp. 935–946. https://doi.org/10.1175/2008JAS2631.1

    Article  ADS  Google Scholar 

  15. Holton, J.R. and Tan, H.C., The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb, J. Atmos. Sci., 1980, vol. 37, no. 10, pp. 2200–2208. https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2

    Article  ADS  Google Scholar 

  16. Hu, Y. and Tung, K.K., Tropospheric and equatorial influences on planetary-wave amplitude in the stratosphere, Geophys. Res. Lett., 2002, vol. 29, no. 2, p. 1019. https://doi.org/10.1029/2001GL013762

    Article  ADS  Google Scholar 

  17. Kinnersley, J.S. and Tung, K.K., Mechanisms for the extratropical QBO in circulation and ozone, J. Atmos. Sci., 1999, vol. 56, no. 12, pp. 1942–1962. https://doi.org/10.1175/1520-0469(1999)056<1942:MFTEQI>2.0.CO;2

    Article  ADS  Google Scholar 

  18. Klekociuk, A.R., Tully, M.B., Alexander, S.P., Dargaville, R.J., Deschamps, L.L., Fraser, P.J., Gies, H.P., Henderson, S.I., Javorniczky, J., Krummel, P.B., Peteli-na, S.V., Shanklin, J.D., Siddaway, J.M., and Stone, K.A., The Antarctic ozone hole during 2010, Aust. Meteorol. Ocean, 2011, vol. 61, no. 4, pp. 253–267. https://doi.org/10.22499/2.6104.006

    Article  Google Scholar 

  19. Krivolutsky, A.A. and Repnev, A.I., Results of Russian studies of the middle atmosphere, 2007–2010, Izv., Atmos. Ocean. Phys., 2012, vol. 48, no. 3, pp. 299–308. https://doi.org/10.1134/S000143381203005X

    Article  Google Scholar 

  20. Manney, G.L., Zurek, R.W., O’Neill, A., and Swinbank, R., On the motion of air through the stratospheric polar vortex, J. Atmos. Sci., 1994, vol. 51, no. 20, pp. 2973–2994. https://doi.org/10.1175/1520-0469(1994)051<2973:OTMOAT>2.0.CO;2

    Article  ADS  Google Scholar 

  21. Naito, Y. and Yoden, S., Behavior of planetary waves before and after stratospheric sudden warming events in several phases of the equatorial QBO, J. Atmos. Sci., 2006, vol. 63, no. 6, pp. 1637–1649. https://doi.org/10.1175/JAS3702.1

    Article  ADS  Google Scholar 

  22. Naoe, H. and Shibata, K., Equatorial quasi-biennial oscillation influence on northern winter extratropical circulation, J. Geophys. Res., 2010, vol. 115, no. 19, p. D19102. https://doi.org/10.1029/2009JD012952

    Article  ADS  Google Scholar 

  23. Niwano, M. and Takahashi, M., The influence of the equatorial QBO on the northern hemisphere winter circulation of a GCM, J. Meteorol. Soc. Jpn., 1998, vol. 76, no. 3, pp. 453–461. https://doi.org/10.2151/jmsj1965.76.3_453

    Article  ADS  Google Scholar 

  24. O’Sullivan, D. and Young, R., Modeling the quasi-biennial oscillation’s effect on the winter stratospheric circulation, J. Atmos. Sci., 1992, vol. 49, no. 24, pp. 2437–2448. https://doi.org/10.1175/1520-0469(1992)049<2437:MTQBOE>2.0.CO;2

    Article  ADS  Google Scholar 

  25. Pascoe, C.L., Gray, L.J., and Scaife, A.A., A GCM study of the influence of equatorial winds on the timing of sudden stratospheric warmings, Geophys. Res. Lett., 2006, vol. 33, no. 6, p. L06825. https://doi.org/10.1029/2005GL024715

    Article  ADS  Google Scholar 

  26. Pogorel’tsev, A.I. and Savenkova, E.N., Interannual climate variability of the time of the spring restructuring of stratospheric circulation, Uch. Zap. RGGMU, 2010, no. 11, pp. 53–62.

  27. Ruzmaikin, A., Feynman, J., Jiang, X., and Yung, Y.L., Extratropical signature of the quasi-biennial oscillation, J. Geophys. Res., 2005, vol. 110, no. 11, p. D11111. https://doi.org/10.1029/2004JD005382

    Article  ADS  Google Scholar 

  28. Sobel, A.H., Plumb, R.A., and Waugh, D.W., Methods of calculating transport across the polar vortex edge, J. Atmos. Sci., 1997, vol. 54, no. 18, pp. 2241–2260. https://doi.org/10.1175/1520-0469(1997)054<2241:MOCTAT>2.0.CO;2

    Article  ADS  Google Scholar 

  29. Thomas, M.A., Timmreck, C., Giorgetta, M.A., Graf, H.-F., and Stenchikov, G., Simulation of the climate impact of Mt. Pinatubo eruption using ECHAM5, Part 1: Sensitivity to the modes of atmospheric circulation and boundary conditions, Atmos. Chem. Phys., 2009, vol. 9, no. 2, pp. 757–769. https://doi.org/10.5194/acp-9-757-2009

    Article  ADS  CAS  Google Scholar 

  30. Thomas, M.A., Giorgetta, M.A., Timmreck, C., Graf, H.-F., and Stenchikov, G., Simulation of the climate impact of Mt. Pinatubo eruption using echam5–part 2: sensitivity to the phase of the QBO and ENSO, Atmos. Chem. Phys., 2009, vol. 9, no. 9, pp. 3001–3009. https://doi.org/10.5194/acp-9-3001-2009

    Article  ADS  CAS  Google Scholar 

  31. Zuev, V.V. and Savelieva, E., The cause of the spring strengthening of the Antarctic polar vortex, Dyn. Atmos. Oceans, 2019a, vol. 87, p. 101097. https://doi.org/10.1016/j.dynatmoce.2019.101097

    Article  Google Scholar 

  32. Zuev, V.V. and Savelieva, E., The cause of the strengthening of the Antarctic polar vortex during October–November periods, J. Atmos. Sol.-Terr. Phys., 2019b, vol. 190, pp. 1–5. https://doi.org/10.1016/j.jastp.2019.04.016

    Article  ADS  Google Scholar 

  33. Zuev, V.V., Zueva, N.E., and Savelieva, E.S., The role of the Mt. Merapi eruption in the 2011 Arctic ozone depletion, Atmos. Environ., 2017, vol. 166, pp. 327–333. https://doi.org/10.1016/j.atmosenv.2017.07.040

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This study was supported as part of state budgetary theme no. 121031300156-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Maslennikova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Samokhina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuev, V.V., Maslennikova, E.A. & Savelieva, E.S. Influence of Quasi-Biennial Oscillation on the Dynamics of Stratospheric Polar Vortices According to Data of Satellite Observations. Izv. Atmos. Ocean. Phys. 59, 1307–1313 (2023). https://doi.org/10.1134/S0001433823120265

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823120265

Keywords:

Navigation