Skip to main content
Log in

Study of the Possibilities of H-α Decomposition for Double Polarization in Radar Monitoring of Afforestation

  • METHODS AND TOOLS FOR PROCESSING AND INTERPRETING SPACE INFORMATION
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

An estimate of the processes of afforestation and forest restoration after fires is relevant for a significant territory of Russia, including due to the issue of carbon neutrality. In this paper we examine the possibilities of radar monitoring of the afforestation process based on the Cloude–Pottier decomposition of dual-polarization L-band data time series. Preliminary segmentation is performed based on the minimal radar backscatter values for the entire observation period. This makes it possible to separate into a separate class treeless areas and open forests, both those that existed before the beginning of the study and those that formed later. Next, polarimetric decomposition is performed by the Cloude–Pottier method to obtain parameters H (entropy) and α (scattering angle) and form time series from them. Research showed the fundamental possibility of monitoring forest dynamics on the H-α plane, where the points of the test plots form characteristic time tracks. A mature dense forest, the characteristics of which are assumed to be constant, was used as a reference for estimating the rate of change on the H-α plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Bondur, V.G., Chimitdorzhiev, T.N., Dmitriev, A.V., and Dagurov, P.N., Spatial anisotropy assessment of the forest vegetation heterogeneity at different azimuth angles of radar polarimetric sensing, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 9, pp. 926–934. https://doi.org/10.1134/S0001433819090093

    Article  Google Scholar 

  2. Bondur, V.G., Chimitdorzhiev, T., Kirbizhekova, I., and Dmitriev, A., Estimation of postfire reforestation with SAR polarimetry and NDVI time series, Forests, 2022, vol. 13, p. 814. https://doi.org/10.3390/f13050814

    Article  Google Scholar 

  3. Chimitdorzhiev, T.N., Dmitriev, A.V., Kirbizhekova, I.I., Sherkhoeva, A.A., Baltukhaev, A.K., and Dagurov, P.N., Remote optical-microwave measurements of forest parameters: State of the art and experimental assessment of potentials, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, vol. 15, no. 4, pp. 9–26. https://doi.org/10.21046/2070-7401-2018-15-4-9-24

  4. Cloude, S.R., The dual polarisation entropy/alpha decomposition: A PALSAR case study, in Proc. 3rd International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, Noordwijk, Netherlands: European Space Agency, 2007, p. 6.

  5. Cloude, S.R., Polarisation: Applications in Remote Sensing, Oxford: Oxford Univ. Press, 2009.

    Book  Google Scholar 

  6. Cloude, S.R. and Pottier, E., An entropy based classification scheme for land applications of polarimetric SAR, IEEE Trans. Geosci. Remote Sens., 1997, vol. 35, no. 1, pp. 68–78. https://doi.org/10.1109/36.551935

    Article  ADS  Google Scholar 

  7. Dmitriev A.V., Chimitdorzhiev T.N., Dagurov P.N. Optical-microwave diagnostics of post-fire afforestation, Vychisl. Tekhnol., 2022, vol. 27, no. 2, pp. 105–121. https://doi.org/10.25743/ICT.2022.27.2.009

    Article  Google Scholar 

  8. Dmitriev, A.V., Chimitdorzhiev, T.N., Dobrynin, S.I., Khudaiberdieva, O.A., and Kirbizhekova, I.I., Optical-microwave diagnostics of agricultural land afforestation, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2022, vol. 19, no. 4, pp. 168–180. https://doi.org/10.21046/2070-7401-2022-19-4-168-180

    Article  Google Scholar 

  9. Dobson, M.C., Ulaby, F.T., LeToan, T., Beaudoin, A., Kasischke, E.S., and Christensen, N., Dependence of radar backscatter on coniferous forest biomass, IEEE Trans. Geosci. Remote Sens., 1992, vol. 30, no. 2, pp. 412–415. https://doi.org/10.1109/36.134090

    Article  ADS  Google Scholar 

  10. ERA5 Daily Aggregates. https://developers.google.com/ earth-engine/datasets/catalog/ECMWF_ERA5_DAILY. Accessed May 11, 2023.

  11. Freeman, A., Fitting a two-component scattering model to polarimetric SAR data from forests, IEEE Trans. Geosci. Remote Sens., 2007, vol. 45, no. 8, pp. 2583–2592. https://doi.org/10.1109/TGRS.2007.897929

    Article  ADS  Google Scholar 

  12. Freeman, A. and Durden, S.L., A three-component scattering model for polarimetric SAR data, IEEE Trans. Geosci. Remote Sens., 1998, vol. 36, no. 3, pp. 963–973. https://doi.org/10.1109/36.673687

    Article  ADS  Google Scholar 

  13. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R., Google earth engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 2017, vol. 202, pp. 18–27. https://doi.org/10.1016/j.rse.2017.06.031

    Article  ADS  Google Scholar 

  14. Guo, J., Wei, P.-L., Liu, J., Jin, B., Su, B.-F., and Zhou, Z.-S., Crop classification based on differential characteristics of H/α scattering parameters for multitemporal quad- and dual-polarization SAR images, IEEE Trans. Geosci. Remote Sens., 2018, vol. 56, no. 10, pp. 6111–6123. https://doi.org/10.1109/TGRS.2018.2832054

    Article  ADS  Google Scholar 

  15. Ji, K. and Wu, Y., Scattering mechanism extraction by a modified Cloude–Pottier decomposition for dual polarization SAR, Remote Sens., 2015, vol. 7, no. 6, pp. 7447–7470. https://doi.org/10.3390/rs70607447

    Article  ADS  Google Scholar 

  16. Koyama, C.N., Watanabe, M., Hayashi, M., Ogawa, T., and Shimada, M., Mapping the spatial–temporal variability of tropical forests by ALOS-2 L-band SAR big data analysis, Remote Sens. Environ., 2019, vol. 233, p. 111372. https://doi.org/10.1016/j.rse.2019.111372

    Article  Google Scholar 

  17. Koyama, C.N., Shimada, M., Watanabe, M., and Tadono, T., ALOS-2/PALSAR-2 long-term pantropical observation: A paradigm shift in global forest monitoring, in Proc. 14th European Conference on Synthetic Aperture Radar (EUSAR-2022), 2022, pp. 1–5.

  18. Krogager, E., Boerner, W.-M., and Madsen, S.N., Feature-motivated Sinclair matrix (sphere/diplane/helix) decomposition and its application to target sorting for land feature classification, Proc. SPIE-Int. Soc. Opt. Eng., 1997, vol. 3120, pp. 144–154. https://doi.org/10.1117/12.300620.

  19. Le Toan, T., Beaudoin, A., Riom, J., and Guyon, D., Relating forest biomass to SAR data, IEEE Trans. Geosci. Remote Sens., 1992, vol. 30, no. 2, pp. 403–411. https://doi.org/10.1109/36.134089

    Article  ADS  Google Scholar 

  20. Lee, J.-S. and Pottier, E., Polarimetric Radar Imaging: From Basics to Applications, Optical Science and Engineering, Boca Raton, Fla.: CRC Press, 2009.

    Book  Google Scholar 

  21. Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., and Papathanassiou, K.P., A tutorial on synthetic aperture radar, IEEE Geosci. Remote Sens. Mag., 2013, vol. 1, no. 1, pp. 6–43. https://doi.org/10.1109/MGRS.2013.2248301

    Article  Google Scholar 

  22. Richards, J.A., Remote Sensing with Imaging Radar, Berlin–Heidelberg: Springer, 2009. https://doi.org/10.1007/978-3-642-02020-9.

  23. SNAP. http://step.esa.int/main/toolboxes/snap/. Accessed May 11, 2023.

  24. Touzi, R., Target scattering decomposition in terms of roll-invariant target parameters, IEEE Trans. Geosci. Remote Sens., 2007, vol. 45, no. 1, pp. 73–84. https://doi.org/10.1109/TGRS.2006.886176

    Article  ADS  Google Scholar 

  25. Yamaguchi, Y., Moriyama, T., Ishido, M., and Yamada, H., Four-component scattering model for polarimetric SAR image decomposition, IEEE Trans. Geosci. Remote Sens., 2005, vol. 43, no. 8, pp. 1699–1706. https://doi.org/10.1109/TGRS.2005.852084

    Article  ADS  Google Scholar 

  26. Yu, Y. and Saatchi, S., Sensitivity of L-band SAR backscatter to aboveground biomass of global forests, Remote Sens., 2016, vol. 8, no. 6, p. 522. https://doi.org/10.3390/rs8060522

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

ALOS-1 and -2, PALSAR-1 and -2, data were provided by the Japan Aerospace Exploration Agency in 2018–2021 in accordance with the ALOS-2 RA6 project (PI: 3092).

Funding

This study was supported by the Russian Science Foundation, project no. 22-27-20081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Dmitriev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, A.V., Chimitdorzhiev, T.N., Kirbizhekova, I.I. et al. Study of the Possibilities of H-α Decomposition for Double Polarization in Radar Monitoring of Afforestation. Izv. Atmos. Ocean. Phys. 59, 1263–1270 (2023). https://doi.org/10.1134/S0001433823120058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823120058

Keywords:

Navigation