Skip to main content
Log in

Lithospheric Magnetic Anomalies According to the CHAMP Satellite Mission Data over the Western Himalayan Syntaxis and Surrounding Areas

  • USE OF SPACE INFORMATION ABOUT THE EARTH GEOPHYSICAL AND GEOLOGICAL RESEARCH FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The spatial distribution of the lithospheric magnetic anomalies field obtained from German CHAMP satellite measurements for several years of its mission is investigated over the territory of the Indo-Asian collision, in particular, the Tarim region and the Western Himalayan syntax (WHS). Maps of the total intensity Ta of the lithospheric magnetic field for these regions are given. The lithospheric magnetic anomalies field as a reflection of the consequences of the Indian lithospheric plate subduction under the Eurasian plate is discussed in the context of modern ideas about the geological and tectonic structure and geophysical processes of the region. The sign inversion of the magnetic anomalies over the northern part of the Indian Plate observed on Ta maps is supposed as a result of the lower crust heating due to mantle processes, the rise of the Curie isotherm and, as a consequence, the loss of the initial magnetization of the lower crust. In order to study the WHS territory and its surroundings in detail, maps of the lithospheric magnetic anomalies field are constructed at the lowest level of CHAMP orbit as possible, which leads to an increase in their resolution by nearing the field sources. The relationship of detected regional anomalies with tectonic processes in this seismically active area and with other available geophysical information is discussed. An interpretation of the obtained information shows that the images of lithospheric magnetic anomalies distinctly correlate with modern view about the location of large-scale geological and tectonic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Notes

  1. Syntax (Greek syntaxis—construction, order)—a sharp reduction in the width of the folded belt, separately of an orogen or folded zone, accompanied by an increase in horizontal compression.

REFERENCES

  1. Abramova, D.Yu. and Abramova, L.M., Lithospheric magnetic anomalies in the territory of Siberia (from measurements by the CHAMP satellite), Russ. Geol. Geophys., 2014, vol. 55, pp. 854–863.

    Article  ADS  Google Scholar 

  2. Abramova, D.Yu., Abramova, L.M., Varentsov, Iv.M., and Filippov, S.V., Study of lithospheric magnetic anomalies of the Greenland–Iceland–Faroe Volcanic Complex from CHAMP satellite data, Geofiz. Issled., 2019, vol. 20, no. 2, pp. 5–18. https://doi.org/10.21455/gr2019.2-1

    Article  Google Scholar 

  3. Abramova, D.Yu., Filippov, S.V, and Abramova, L.M., Possible use of satellite geomagnetic observations in geological and tectonic studies of lithosphere structure, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 12, pp. 1695–1704.

    Article  Google Scholar 

  4. Abramova, D.Yu., Abramova, L.M., and Varentsov, I.M., Anomalous lithospheric magnetic field over the Indo-Asian collision territory according to CHAMP satellite data, Izv., Atmos. Ocean. Phys., 2022a, vol. 58, no. 9, pp. 1077–1085. https://doi.org/10.1134/S000143382209002X

    Article  Google Scholar 

  5. Abramova, D.Yu., Filippov, S.V., Abramova, L.M., and Varentsov, I.M., Lithospheric magnetic anomalies over large igneous province territories, Izv., Atmos. Ocean. Phys., 2022b, vol. 58, no. 10, pp. 1208–1217. https://doi.org/10.1134/S0001433822100012

    Article  Google Scholar 

  6. Bai, D., Unsworth, M.J., Meju, M.A., Ma, X., Teng, J., Kong, X., Sun, Y, Sun, J., Wang, L., Jiang, C., Zhao, C., Xiao, P., and Liu, M., Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging, Nat. Geosci. Lett., 2010, vol. 3, pp. 358–362. https://doi.org/10.1038/NGEO830S

    Article  ADS  CAS  Google Scholar 

  7. Brookfield, M.E. and Hashmat, A., The geology and petroleum potential of the North Afghan platform and adjacent areas (northern Afghanistan, with parts of southern Turkmenistan, Uzbekistan and Tajikistan, Earth Sci. Rev., 2001, vol. 55, pp. 41–71.

    Article  ADS  CAS  Google Scholar 

  8. Burtman, V.S. and Molnar, P., Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir, GSA Spec. Pap., 1993, vol. 281, pp. 1–76.

    Google Scholar 

  9. Chen, Y., Roecker, S., and Kosarev, G., Elevation of the 410-km discontinuity beneath the central Tien Shan: Evidence for a detached lithospheric root, Geophys. Res. Lett., 1997, vol. 24, pp. 1531–1534.

    Article  ADS  Google Scholar 

  10. Cotton, F. and Avouac, P., Crust and upper-mantle structure under the Tian Shan from surface wave dispersion, Phys. Earth Planet Inter., 1994, vol. 84, pp. 1–4.

    Article  Google Scholar 

  11. Dewey, J.F., Cande, S., and Pitman, W.C., The tectonic evolution of the India/Eurasia collision zone, Eclogae Geol. Helv., 1989, vol. 82, pp. 717–734.

    Google Scholar 

  12. Dobretsov, N.L., Kulakov, I.Yu., Polyansky, O.P., Geodynamics and stress–strain patterns in different tectonic settings, Russ. Geol. Geophys., 2013, vol. 54, no. 4, pp. 357–380.

    Article  ADS  Google Scholar 

  13. Gao, G., Kang, G., Li, G., and Bai, C., Crustal magnetic anomaly and curie surface beneath Tarim Basin, China, and its adjacent area, Can. J. Earth Sci., 2015, vol. 52, no. 6. https://doi.org/10.1139/cjes-2014-0204

  14. Gao, G., Kang, G., Li, G., Bai, C., and Wu, Y., An analysis of crustal magnetic anomaly and Curie surface in west Himalayan syntaxis and adjacent area, Acta Geod. Geophys., 2017, pp. 407–420. https://doi.org/10.1007/s40328-016-0179-z

  15. Gao, R., Huang, D., and Lu, D., Deep seismic reflection profile across the juncture zone between the Tarim basin and the west Kunlun mountains, Chin Sci. Bull., 2000, vol. 45, pp. 2281–2286.

    Article  Google Scholar 

  16. Gao, Z. and Fan, T., Intra-platform tectono-sedimentary response to geodynamic transition along the margin of the Tarim Basin, NW China, J. Asian Earth Sci., 2014, vol. 96, pp. 178–193. https://doi.org/10.1016/j.jseaes.2014.08.023

    Article  ADS  Google Scholar 

  17. Ghose, S., Hamburger, W., and Virieux, J., Three-dimensional velocity structure and earthquake locations beneath the northern Tian Shan of Kyrgyzstan, Central Asia, J. Geophys. Res., 1998, vol. 103, pp. 2725–2748.

    Article  ADS  Google Scholar 

  18. Hemant, K., Maus, S., and Haak, V., Interpretation of CHAMP crustal field anomaly maps using a geographical information system (GIS) technique, in Earth Observation with CHAMP: Results from Three Years in Orbit, 2005, pp. 249–254.

  19. Huang, J. and Zhao, D., High-resolution mantle tomography of china and surrounding regions, J. Geophys. Res., 2006, vol. 111, p. B09305. https://doi.org/10.1029/2005JB004066

    Article  ADS  Google Scholar 

  20. Kosarev, G.L., Petersen, V., Vinnik, L.P., and Roecker, S.W., Receiver functions for the Tien Shan analog broadband network: Contrasts in the evolution of structures across the Talasso-Fergana fault, J. Geophys. Res., 1993, vol. 98, pp. 4437–4448.

    Article  ADS  Google Scholar 

  21. Koulakov, I. and Sobolev, S., A tomographic image of Indian lithosphere break-off beneath the Pamir–Hindukush region, Geophys J. Int., 2006, vol. 164, pp. 425–440.

    Article  ADS  Google Scholar 

  22. Lei, J., Zhou, H., and Zhao, D., 3-D velocity structure of P-wave in the crust and upper-mantle beneath Pamir and adjacent region, Chin J. Geophys., 2002, vol. 45, pp. 802–811.

    Google Scholar 

  23. Li, S. and Mooney, W.D., Crustal structure of china from deep seismic sounding profiles, Tectonophysics, 1998, vol. 288, pp. 105–113. https://doi.org/10.1016/S0040-1951(97) 00287-4.

  24. Li, Z., Chen, H., Song, B., Li, Y., Yang, S., and Yu, X., Temporal evolution of the Permian large igneous province in Tarim Basin in northwestern China, J. Asian Earth Sci., 2011, vol. 42, pp. 917–927. https://doi.org/10.1016/j.jseaes.2011.05.009

    Article  ADS  Google Scholar 

  25. Lowes, F., Geomagnetics spectrum, spatial, in Encyclopedia of Geomagnetism and Paleomagnetism, Gubbins, D. and Herrero-Bervera, E., Eds., Berlin: Springer, 2007, pp. 350–353.

    Google Scholar 

  26. Lu, S., Li, H., Zhang, C., and Niu, G., Geological and geochronological evidence for the Precambrian evolution of the Tarim craton and surrounding continental fragments, Precambrian Res., 2008, vol. 160, pp. 94–107. https://doi.org/10.1016/j.precamres.2007.04.025

    Article  ADS  CAS  Google Scholar 

  27. Mechie, J., Yuan, X., Schurr, B., Schneider, F., Sippl, C., Ratschbacher, L., Minaev, V., Gadoev, M., Oimahmadov, I., Abdybachaev, U., Moldobekov, B., Orunbaev, S., and Negmatullaev, S., Crustal and uppermost mantle velocity structure along a profile across the Pamir and southern Tien Shan as derived from project TIPAGE wide-angle seismic data, Geophys. J. Int., 2012, vol. 188, pp. 385–407.

    Article  ADS  Google Scholar 

  28. Molnar, P., England, P., and Martinod, J., Mantle dynamics, the uplift of the Tibetan Plateau, and the Indian monsoon, Rev. Geophys., 1987, vol. 31, pp. 357–396.

    Article  ADS  Google Scholar 

  29. Negredo, A., Replumaz, A., Villasenor, A., and Guillot, S., Modeling the evolution of continental subduction processes in the Pamir–Hindu Kush region, Earth Planet Sci. Lett., 2007, vol. 259, pp. 212–225. https://doi.org/10.1016/j.epsl.04.043

    Article  ADS  CAS  Google Scholar 

  30. Nelson, K., Zhao, W., and Brown, L., Partially molten middle crust beneath southern Tibet: Synthesis of Project INDEPTH results, Science, 1996, vol. 274, pp. 1684–1696.

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Reigber, C., Lühr, H., and Schwintzer, P., CHAMP mission status, Adv. Space Res., 2002, vol. 30, no. 2, pp. 129–134. https://doi.org/10.1016/S0273-1177(02)00276-4

    Article  ADS  Google Scholar 

  32. Roecker, S., Sabitova, M., Vinnik, L., Bormakov, A., Golvanov, I., and Mamatkanova, R., Three-dimensional elastic wave velocity structure of the western and central Tian Shan, J. Geophys. Res., 1993, vol. 98, no. 15, pp. 779–795.

    Google Scholar 

  33. Sobel, E.R., Chen, J., and Heermance, R.V., Late Oligocene–Early Miocene initiation of shortening in the Southwestern Chinese Tian Shan: Implications for Neogene shortening rate variations, Earth Planet Sci. Lett., 2006, vol. 247, pp. 70–81. https://doi.org/10.1016/j.epsl.2006.03.048

    Article  ADS  CAS  Google Scholar 

  34. Sobel, E., Schoenbohm, L., Chen, J., Thiede, R., Stockli, D., Sudo, M., and Strecker, M., Late Miocene–Pliocene deceleration of dextral slip between Pamir and Tarim: Implications for Pamir orogenesis, Earth Planet Sci. Lett., 2011, vol. 304, pp. 369–378. https://doi.org/10.1016/j.epsl.2011.02.012

    Article  ADS  CAS  Google Scholar 

  35. Tapponnier, P., Mattauer, M., Proust, F., and Cassaigneau, C., Mesozoic ophiolites, sutures, and large-scale tectonic movements in Afghanistan, Earth Planet Sci. Lett., 1981, vol. 52, pp. 355–371.

    Article  ADS  Google Scholar 

  36. Tapponnier, P., Zhiqin, X., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., and Jingsui, Y., Oblique stepwise rise and growth of the Tibetan Plateau, Science, 2001, vol. 294, pp. 1671–1677.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Tiwari, V.M., Rajasekhar, R.P., and Mishra, D.C., Gravity anomaly, lithospheric structure and seismicity of west Himalayan syntaxis, J. Seismol., 2009, vol. 13, pp. 363–370.

    Article  ADS  Google Scholar 

  38. Wang, Q., Zhang, P., Freymueller, J., Bilham, R., and Larson, K., Present-day crustal deformation in China constrained by global positioning system measurements, Science, 2001, vol. 294, pp. 574–577.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Wegener, A., Die Entstehung der Kontinente und Ozeane, Braunschweig: Vieweg und Sohn, 1915; Moscow, Gosizdat, 1925.

  40. Wessel, P. and Smith, W.H.F., The generic mapping tools. Technical reference and cookbook version 4.2, 2007. https://doi.org/gmt.soest.hawaii.edu.

  41. Windley, B.F., Allen, M.B., Zhang, C., Zhao, Z., and Wang, G., Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, Central Asia, Geology, 1990, vol. 18, pp. 128–131. https://doi.org/10.1130/0091-7613

    Article  ADS  Google Scholar 

  42. Yang, H., Teng, J., Zhang, X., Sun, R., and Ke, X., Features of the deep geophysical field beneath the west Himalayan syntaxis, Progr. Geophys., 2009, vol. 24, pp. 1975–1986. https://doi.org/10.3969/j.issn1004-2903.2009.06.007

    Article  Google Scholar 

  43. Yin, A. and Harrison, T., Geologic evolution of the Himalayan–Tibetan orogeny, Annu. Rev. Earth Planet. Sci., 2000, vol. 28, pp. 211–280.

    Article  ADS  CAS  Google Scholar 

  44. Zhang, P., Wang, M., Gan, W., Burgmann, R., Molnar, P., Wang, Q., Niu, Z., Sun, J., Wu, J., Hanrong, S., and Xinzhao, Y., Continuous deformation of the Tibetan plateau from global positioning system data, Geology, 2004, vol. 32, pp. 809–812. https://doi.org/10.1130/G20554.1

    Article  ADS  Google Scholar 

  45. Zhao, D., Multiscale seismic tomography and mantle dynamics, Gondwana Res., 2009, vol. 15, pp. 297–323.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Abramova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramova, D.Y., Abramova, L.M. Lithospheric Magnetic Anomalies According to the CHAMP Satellite Mission Data over the Western Himalayan Syntaxis and Surrounding Areas. Izv. Atmos. Ocean. Phys. 59, 1361–1371 (2023). https://doi.org/10.1134/S0001433823120022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823120022

Keywords:

Navigation