Skip to main content
Log in

Moderate Earthquakes (M = 4.1–4.8) in 2011–2019 in the Area of the Goloustnaya River Delta (Southern Baikal Region): A Detailed Analysis

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In this paper we consider four moderate earthquakes that occurred on November 9, 2011; September 5, 2015; March 16, 2018; and October 10, 2019, in the southern basin of Baikal Lake near the Goloustnaya River delta. Seismotectonically, the earthquake sources are confined to the southwestern part of the Olkhon graben. The earthquake focal mechanisms allow us to suggest the activity of local submeridional faults, feathering the structures of the general northeast strike. For two seismic events, the following parameters were determined: scalar seismic moment M0 = 4.0 × 1015 N m, moment magnitude Mw = 4.4, and source depth h = 12 km for the September 5, 2015 earthquake and M0 = 2.2 × 1015 N m, Mw = 4.2, and h = 7 km for the March 16, 2018 earthquake. None of the seismic events was followed by noticeable aftershock activity. In 2011–2019, these earthquakes caused a noticeable macroseismic effect within the Irkutsk agglomeration, as well as a rather wide public response. Macroseismic data were collected mainly using an online survey system; the number of responses received within the first day after an earthquake varies from 127 to 341. The maximum intensity, IV–V, was observed for the November 9, 2011 earthquake in the settlement of Bolshoye Goloustnoye. The results can be used for assessing the seismic hazard in the Southern Baikal region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Bassin, C., Laske, G., and Masters, G., The current limits of resolution for surface wave tomography in North America, EOS, Trans. Am. Geophys. Union, 2000, vol. 81, p. 897.

    Google Scholar 

  2. Berzhinskaya, L.P., Radziminovich, Ya.B., Salandaeva, O.I., Novopashina, A.V., Lukhneva, O.F., and Ivanova, N.V., Comprehensive assessment of seismic hazard and vulnerability of construction objects as a prospect for further urban planning of territories, Seism. Instrum., 2022, vol. 58, no. 4, pp. 350–361. https://doi.org/10.3103/S0747923922030045

    Article  Google Scholar 

  3. Bossu, R., Landès, M., Roussel, F., Steed, R., Mazet-Roux, G., Martin, S.S., and Hough, S., Thumbnail-based questionnaires for the rapid and efficient collection of macroseismic data from global earthquakes, Seismol. Res. Lett., 2017, vol. 88, no. 1, pp. 72–81. https://doi.org/10.1785/0220160120

    Article  Google Scholar 

  4. Bukchin, B.G., Determining the parameters of an earthquake source from records of surface waves in the case of inaccurate specification of medium characteristics, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1989, no. 9, pp. 34–41.

  5. Certificate of state registration of computer software no. 2018662004 “Calculation code and visualization of earthquake source mechanisms according to the signs of first arrivals of P-waves (FA), Lander, A.V., Registration Date: September 25, 2018.

  6. Chebrov, D.V., Tikhonov, S.A., Droznin, D.V., Droznina, S.Ya., Matveenko, E.A., Mityushkina, S.V., Saltykov, V.A., Senyukov, S.L., Serafimova, Yu.K., Sergeev, V.A., and Yashchuk, V.V., Seismic monitoring and forecasting system in Kamchatka and its development: Main results of observations in 2016–2020., Ross. Seismol. Zh., 2021, vol. 3, no. 3, pp. 28–49. https://doi.org/10.35540/2686-7907.2021.3.02

    Article  Google Scholar 

  7. Dziewonski, A.M. and Anderson, D.L., Preliminary reference Earth model, Phys. Earth Planet. Inter., 1981, vol. 25, no. 4, pp. 297–356.

    Article  Google Scholar 

  8. Filippova, A.I., Bukchin, B.G., Fomochkina, A.S., Melnikova, V.I., Radziminovich, Y.B., and Gileva, N.A., Source process of the September 21, 2020, Mw 5.6 Bystraya earthquake at the South-Eastern segment of the Main Sayan fault (Eastern Siberia, Russia), Tectonophysics, 2022, vol. 822, p. 229162. https://doi.org/10.1016/j.tecto.2021.229162

    Article  Google Scholar 

  9. Gileva, N.A., Mel’nikova, V.I., Radziminovich, N.A., Deverchère, J., Location of earthquakes and average velocity parameters of the crust in some areas of the Baikal region, Russ. Geol. Geophys., 2000, vol. 41, no. 5, pp. 609–615.

    Google Scholar 

  10. Gileva, N.A., Kobeleva, E.A., Radziminovich, Ya.B., Melni-kova, V.I., and Chechelnitsky, V.V., The September 21, 2020, M w = 5.5, Bystraya earthquake in the Southern Baikal region: Preliminary results of instrumental and macroseismic observations, Seism. Instrum., 2021, vol. 57, no. 2, pp. 173–186. https://doi.org/10.3103/S0747923921020237

    Article  Google Scholar 

  11. Global CMT: Online catalog. Lamont-Doherty Earth Observatory (LDEO) of Columbia University, Columbia, S.C. http://www.globalcmt.org. Accessed March 31, 2023.

  12. GOST R 57546-2017, Earthquakes: Seismic Intensity Scale, Moscow: Standartinform, 2017.

  13. Hutchinson, D.R., Golmshtok, A.J., Zonenshain, L.P., Moore, T.C., Scholz, C.A., and Klitgord, K.D., Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data, Geology, 1992, vol. 20, no. 7, pp. 589–592. https://doi.org/10.1130/0091-7613(1992)020<0589:DATFOT>2.3.CO;2

    Article  Google Scholar 

  14. Konovalov, A.V., Stepnov, A.A., Bogdanov, E.C., Dmitrienko, R.Yu., Orlin, I.D., Sychev, A.S., Gavrilov, A.V., Manaichev, K.A., Tsoy, A.T., and Stepnova, Yu.A., New tools for rapid assessment of felt reports and a case study on Sakhalin Island, Seism. Instrum., 2022, vol. 58, pp. 676–693. https://doi.org/10.3103/S0747923922060081

    Article  Google Scholar 

  15. Konovalov, A.V., Stepnova, Yu.A., and Stepnov, A.A., A strong earthquake on February 5, 2022 (ML 5.5) near a Petroleum Deposit on the Northeastern Shelf of Sakhalin Island, Russ. J. Pac. Geol., 2023, vol. 17, no. 1, pp. 54–67. https://doi.org/10.1134/S1819714023010049

    Article  Google Scholar 

  16. Lasserre, C., Bukchin, B., Bernard, P., Tapponier, P., Gaudemer, Y., Mostinsky, A., and Dailu, R., Source parameters and tectonic origin of the 1996 June 1 Tianzhu (M w = 5.2) and 1995 July 21 Yongen (M w = 5.6) earthquakes near the Haiyuan fault (Gansu, China), Geophys. J. Int., 2001, vol. 144, no. 1, pp. 206–220. https://doi.org/10.1046/j.1365-246x.2001.00313.x

    Article  Google Scholar 

  17. Levi, K.G., Babushkin, S.M., Badardinov, A.A., Buddo, V.Yu., Larkin, G.V., Miroshnichenko, A.I., Sankov, V.A., Ruzhich, V.V., Wong, H.K., Delvaux, D., and Colman, S., Active Baikal tectonics, Russ. Geol. Geophys., 1995, vol. 36, no. 10, pp. 143–154.

    Google Scholar 

  18. Levi, K.G., Miroshnitchenko, A.I., San’kov, V.A., Babushkin, S.M., Larkin, G.V., Badardinov, A.A., Wong, H.K., Colman, S., and Delvaux, D., Active faults of the Baikal depression, Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine, 1997, vol. 21, no. 2, pp. 399–434.

    Google Scholar 

  19. Levshin, A.L., Yanovskaya, T.B., Lander, A.V., Bukchin, B.G., Barmin, M.P., Ratnikova, L.I., and Its, E.N., Poverkhnostnye seismicheskie volny v gorizontal’no-neodnorodnoi Zemle (Surface Seismic Waves in a Horizontally Inhomogeneous Earth), Moscow: Nauka, 1986.

  20. Logachev, N.A., A rational subdivision of geological structure in the Baikal Lake basin, Dokl. Earth Sci., 2000, vol. 375, no. 9, pp. 1366–1370.

    Google Scholar 

  21. Logachev, N.A., Historic core of the Baikal rift zone, Dokl. Earth Sci., 2001, vol. 376, no. 1, pp. 43–46.

    Google Scholar 

  22. Logachev, N.A., History and geodynamics of the Baikal rift, Russ. Geol. Geophys., 2003, vol. 44, no. 5, pp. 391–406.

    Google Scholar 

  23. Lunina, O.V., The digital map of the Pliocene–Quaternary crustal faults in the Southern East Siberia and the adjacent Northern Mongolia, Geodyn. Tectonophys., 2016, vol. 7, no. 3, pp. 407–434. https://doi.org/10.5800/GT-2016-7-3-0215

    Article  Google Scholar 

  24. Lunina, O.V., Caputo, R., Gladkov, A.A., and Gladkov, A.S., Southern East Siberia Pliocene–Quaternary faults: Database, analysis and inference, Geosci. Front., 2014, vol. 5, pp. 605–619. https://doi.org/10.1016/j.gsf.2013.12.006

    Article  Google Scholar 

  25. Melnikova, V.I., Gileva, N.A., Aref’ev, S.S., Bykova, V.V., and Seredkina, A.I., The August 27, 2008, M w = 6.3 Kultuk earthquake (South Baikal): The stress-strain state of the source area from the aftershock data, Izv., Phys. Solid Earth, 2013, vol. 49, no. 4, pp. 563–576. https://doi.org/10.1134/S1069351313040071

    Article  Google Scholar 

  26. Nataf, H.-C. and Ricard, Y., 3SMAC: On a priori tomographic model of the upper mantle based on geophysical modeling, Phys. Earth Planet. Inter., 1996, vol. 95, nos. 1–2, pp. 101–122. https://doi.org/10.1016/0031-9201(95)03105-7

    Article  Google Scholar 

  27. Novyi katalog sil’nykh zemletryasenii na territorii SSSR s drevneishikh vremen do 1975 g. (New Catalog of Strong Earthquakes in the USSR from Ancient Times to 1975), Kondorskaya, N.V. and Shebalin, N.V., Eds., Moscow: Nauka, 1977.

    Google Scholar 

  28. Radziminovich, Ya.B., Khritova, M.A., and Gileva, N.A., Modern methods for acquisition of macroseismic data and their possible uses for eastern Siberia, J. Volcanol. Seismol., 2014, vol. 8, no. 6, pp. 375–389. https://doi.org/10.1134/S0742046314060062

    Article  Google Scholar 

  29. Radziminovich, Ya.B., Filippova, A.I., Gileva, N.A., and Mel’nikova, V.I., Earthquake of February 3, 2016 in the Middle Baikal region: Source parameters and macroseismic effects, Izv., Atmos. Ocean. Phys., 2022a, vol. 58, no. 8, pp. 936–953. https://doi.org/10.1134/S0001433822080035

    Article  Google Scholar 

  30. Radziminovich, Y.B., Gileva, N.A., Tubanov, T.A., Lukhneva, O.F., Novopashina, A.V., and Tcydypova, L.R., The December 9, 2020, M w 5.5 Kudara earthquake (Middle Baikal, Russia): Internet questionnaire hard test and macroseismic data analysis, Bull. Earthquake Eng., 2022b, vol. 20, no. 3, pp. 1297–1324. https://doi.org/10.1007/s10518-021-01305-8

    Article  Google Scholar 

  31. Rautian, T.G., Khalturin, V.I., Fujita, K., Mackey, K.G., and Kendall, A.D., Origins and methodology of the Russian energy K-class system and its relationship to magnitude scales, Seismol. Res. Lett., 2007, vol. 78, no. 6, pp. 579–590. https://doi.org/10.1785/gssrl.78.6.579

    Article  Google Scholar 

  32. Sbarra, P., Tosi, P., and De Rubeis, V., Web-based macroseismic survey in Italy: Method validation and results, Nat. Hazards, 2010, vol. 54, no. 2, pp. 563–581. https://doi.org/10.1007/s11069-009-9488-7

    Article  Google Scholar 

  33. Scholz, C.A. and Hutchinson, D.R., Stratigraphic and structural evolution of the Selenga delta accommodation zone, Lake Baikal rift, Siberia, Int. J. Earth Sci., 2000, vol. 89, no. 2, pp. 212–228. https://doi.org/10.1007/s005310000095

    Article  Google Scholar 

  34. Ten Brink, U.S. and Taylor, M.H., Crustal structure of central Lake Baikal: Insights into intracontinental rifting, J. Geophys. Res.: Solid Earth, 2002, vol. 107, no. B7, p. 2132. https://doi.org/10.1029/2001JB000300

    Article  Google Scholar 

  35. Tubanov, Ts.A., Sanzhieva, D.P.-D., Kobeleva, E.A., Predein, P.A., and Tsydypova, L.R., Kudara earthquake of September 12, 2020 (M W = 5.5) on Lake Baikal: Results of instrumental and macroseismic observations, Seism. Instrum., 2022, vol. 58, no. 1, pp. 86–98. https://doi.org/10.3103/S0747923922010108

    Article  Google Scholar 

  36. Wald, D.J., Quitoriano, V., Dengler, L.A., and Dewey, J.W., Utilization of the internet for rapid community intensity maps, Seismol. Res. Lett., 1999, vol. 70, no. 6, pp. 680–697. https://doi.org/10.1785/gssrl.70.6.680

    Article  Google Scholar 

  37. Wald, D.J., Quitoriano, V., Worden, C.B., Hopper, M., and Dewey, J.W., USGS “Did you feel it?” Internet-based macroseismic intensity maps, Ann. Geophys., 2011, vol. 54, no. 6, pp. 688–707. https://doi.org/10.4401/ag-5354

    Article  Google Scholar 

  38. Zorin, Yu.A., Mordvinova, V.V., Turutanov, E.Kh., Belichenko, V.G., Mazukabzov, A.M., Kosarev, G.L., and Gao, S.S., New geophysical data on thrust faults in the Baikal region, Western Transbaikalia, and Central Mongolia, Geotectonics, 2002, vol. 36, no. 3, pp. 203–214.

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

This research was carried out using data obtained at the Seismo-Infrasonic Complex for Monitoring the Arctic Permafrost Zone and Complex for Continuous Seismic Monitoring of the Russian Federation, Adjacent Territories, and the World unique scientific installation (https://ckp-rf.ru/usu/507436/, http://www.gsras.ru/unu/).

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. B. Radziminovich.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radziminovich, Y.B., Filippova, A.I., Melnikova, V.I. et al. Moderate Earthquakes (M = 4.1–4.8) in 2011–2019 in the Area of the Goloustnaya River Delta (Southern Baikal Region): A Detailed Analysis. Izv. Atmos. Ocean. Phys. 59, 1587–1604 (2023). https://doi.org/10.1134/S0001433823100079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823100079

Keywords:

Navigation