Skip to main content
Log in

Recent Geodynamics of Induced Faults

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

An analysis of the results of multiple repeated geodetic observations of deformation processes in fault zones is presented. Numerous examples have shown that the dominant type of local vertical displacements of the earth’s surface in fault zones is anomalous symmetrical subsidence, which is identified with thrust faults. A mechanism for the parametric induction of near-fault deformations by small endogenous, exogenous, and technogenic influences is proposed. Examples of these impacts are given. Antiphase behavior in the time course of deformation and seismic processes are revealed. An energy model of the relationship between deformation and seismic phenomena is considered. Based on ideas about volumetric deformations localized inside faults and formed under external (regional) quasi-static loads, a quantitative geomechanical model for the formation of anomalous deformations in fault zones has been developed. Examples of the spatiotemporal migration of deformation activity of fault zones are given. A phenomenological model of the formation of autowave deformation processes is formulated based on the mechanism of the parametric nonlinear interaction of induced faults as a system of kinematically excitable elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.
Fig. 40.

REFERENCES

  1. Abramyan, G.O., Kuz’min, D.K., and Kuz’min, Yu.O., Solving inverse problems of recent subsoil geodynamics in hydrocarbon fields and underground gas storage facilities, Marksheiderskoe Delo, 2018, no. 4, pp. 52–61.

  2. Adushkin, V.V. and Turuntaev, S.B., Tekhnogennaya seismichnost’ – indutsirovannaya i triggernaya (Induced and Triggered Anthropogenic Seismicity), Moscow: IDG RAN, 2015.

  3. Andronov, A.A. and Chaikin, C.E., Theory of Oscillations, New Jersey, Princeton: Princeton Univ. Press, 1949.

    Google Scholar 

  4. Belousov, V.V., Osnovy strukturnoi geologii (Fundamentals of Structural Geology), Moscow: Nedra, 1985.

  5. Bird, R.B., Stewart, W.E., and Lightfoot, E.L., Transport Phenomena, New York: John Wiley and Sons, 1965.

    Google Scholar 

  6. Bott, M.H.P. and Dean, D.S., Stress diffusion from plate boundaries, Nature, 1973, vol. 243, no. 5406, pp. 339–341.

    Article  ADS  Google Scholar 

  7. Broek, D., Elementary Engineering Fracture Mechanics, Dordrecht: Kluwer, 1986.

    Google Scholar 

  8. Brychkov, Yu.A., Marichev, O.I., and Prudnikov, A.P., Tablitsy neopredelennykh integralov: Spravochnik (Tables of Indefinite Integrals: A Handbook), Moscow: Nauka, 1986.

  9. Bykov, V.G., Prediction and observation of strain waves in the Earth, Geodyn. Tectonophys., 2018, vol. 9, no. 3, pp. 721–754.

    Article  Google Scholar 

  10. Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, Oxford: Clarendon Press, 1959.

    Google Scholar 

  11. Churikov, V.A. and Kuzmin, Yu.O., Relation between deformation and seismicity in the active fault zone of Kamchatka, Russia, Geophys. J. Int., 1998, vol. 133, pp. 607–614.

    Article  ADS  Google Scholar 

  12. Converse, G. and Comninou, M., Dependence on the elastic constants of surface deformation due to faulting, Bull. Seismol. Soc. Am., 1975, vol. 65, no. 5, pp. 1173–1176.

    Article  Google Scholar 

  13. Courant, R. and Hilbert, D., Methods of Mathematical Physics, vol. 2: Partial Differential Equations, New York: John Wiley and Sons, 1966.

    Google Scholar 

  14. Davis, P.M., Surface deformation associated with a dipping hydrofracture, J. Geophys. Res.: Solid Earth, 1983, vol. 88, no. B7, pp. 5826–5834.

    Article  Google Scholar 

  15. Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Technologies for analyzing geophysical time series: Part 1. Software requirements, Seism. Instrum., 2017a, vol. 53, no. 1, pp. 46–59.

    Article  Google Scholar 

  16. Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Technology for analyzing geophysical time series: Part 2. WinABD: A software package for maintaining and analyzing geophysical monitoring data, Seism. Instrum., 2017b, vol. 53, no. 3, pp. 203–223.

    Article  Google Scholar 

  17. Dobrovol’skii, I.P., Matematicheskaya teoriya podgotovki i prognoza tektonicheskogo zemletryaseniya (Mathematical Theory of the Preparation and Forecast of Tectonic Earthquakes), Moscow: Fizmatlit, 2009.

  18. Dzurisin, D., Volcano Deformation: Geodetic Monitoring Techniques, Berlin: Springer, 2007.

    Google Scholar 

  19. Elsasser, W.H., Convection and stress propagation in the upper mantle, in The Application of Modern Physics to the Earth and Planetary Interiors, Runcorn, S.K., Ed., New York: Wiley, 1969, pp. 223–246.

    Google Scholar 

  20. Eshelby, J.D., Elastic inclusions and inhomogeneities, Prog. Solid Mech., 1961, no. 2, pp. 89–140.

  21. Frenkel’, Ya.I., Statisticheskaya fizika (Statistical Physics), Moscow–Leningrad: AN SSSR, 1948.

  22. Geertsma, J., A remark on the analogy between thermoelasticity and the elasticity of saturated porous media, J. Mech. Phys. Solids, 1957a, vol. 6, pp. 13–16.

    Article  ADS  Google Scholar 

  23. Geologicheskii slovar’ (Geological Dictionary), Petrov, O.V., Ed., St. Petersburg, VSEGEI, 2010, vol. 1; 2011, vol. 2; 2012, vol. 3.

  24. Goodier, J.N., On the integration of the thermoelastic equations, Philos. Mag., 1937, vol. 7, pp. 1017–1032.

    Article  Google Scholar 

  25. Grigor’ev, A.S., Volovich, I.M., Mikhailova, A.V., Rebetskii, Yu.L., and Shakhmuradova, Z.E., The faulting problem, Fiz. Zemli, 1987, no. 6, pp. 3–21.

  26. Gzovskii, M.V., Osnovy tektonofiziku (Basics of Tectonophysics), Moscow: Nauka, 1975.

  27. He, Y.M., Wang, W.M., and Yao, Z.X., Static deformation due to shear and tensile faults in a layered half-space, Bull. Seismol. Soc. Am., 2003, vol. 93, pp. 2253–2263.

    Article  Google Scholar 

  28. Izyumov, S.F. and Kuz’min, Yu.O., Study of the recent geodynamic processes in the Kopet-Dag region, Izv., Phys. Solid Earth, 2014a, vol. 50, no. 6, pp. 719–731.

    Article  Google Scholar 

  29. Izyumov, S.F. and Kuz’min, Yu.O., Study of deformation processes in geodynamic polygons of oil-and-gas-bearing regions of Turkmenistan, Marksheiderskii Vestn., 2014b, no. 4, pp. 34–40.

  30. Izyumov, S.F., Fattakhov, E.A., and Panfilova, T.V., Spectral–temporal analysis of deformation processes in fault zones of Kopetdag, in Pyataya tektonofizicheskaya konferentsiya v IFZ RAN “Tektonofizika i aktual’nye voprosy nauk o Zemle”. Posvyashchaetsya 100-letiyu M.V. Gzovskogo: Materialy dokladov Vserossiiskoi konferentsii s mezhdunarodnym uchastiem (Proceedings of the Fifth Conference with International Participation Devoted to the 100th Anniversary of M.V. Gzovskii, held at the Institute of the Solid Earth, RAS), Moscow: IFZ RAN, 2020, pp. 319–325.

  31. Kasahara, K., Earthquake Mechanics, Cambridge Univ. Press, 1981; Moscow: Mir, 1985.

  32. Kato, T., Crystal movements in the Tohoku district, Japan, during the period 1900–1975 and their tectonic implication, Tectonophysics, 1979, vol. 60, pp. 141–167.

    Article  ADS  Google Scholar 

  33. Kerner, B.S. and Osipov, V.V., Avtosolitony (Autosolitons), Moscow: Nauka, 1991.

    Google Scholar 

  34. Khisamov, R.S, Gatiyatullin, N.S., Kuz’min, Yu.O., Bakirov, R.Kh., Gatiyatullin, R.N., Rakhmattulin, M.Kh., Baratov, A.R., and Kashurkin, P.I., Sovremennaya geodinamika i seismichnost' yugo-vostoka Tatarstana (Recent Geodynamics and Seismicity of Southeastern Tatarstan), Kazan: Fen, 2012.

  35. Kissin, I.G., Flyuidy v zemnoi kore: Geofizicheskie i tektonicheskie aspekty (Fluids in the Earth’s Crust: Geophysical and Tectonic Aspects), Moscow: Nauka, 2009.

  36. Knopoff, L. and Randall, M.J., The compensated linear-vector dipole: Mechanism for deep earthquakes, J. Geophys. Res., 1970, vol. 75, no. 26, pp. 4957–4963.

    Article  ADS  Google Scholar 

  37. Kocharyan, G.G., Geomekhanika razlomov (Geomechanics of Faults), Moscow: GEOS, 2016.

  38. Kolmogorov, A.N., Petrovskii, I.G., and Piskunov, N.S., Study of the equation of diffusion coupled with increasing amount of matter and its application to a biological problem, Byull. Mosk. Gos. Univ., Ser. A., 1937, no. 6, pp. 1–26.

  39. Krinskii, V.I. and Mikhailov, A.S., Avtovolny (Autowaves), Moscow: Znanie, 1984.

    Google Scholar 

  40. Kuzmin, Yu.O., Recent geodynamics of fault zones of sedimentary basins and earthquake preparation processes, in Prognoz zemletryasenii. Dushanbe (Prediction of Earthquakes: Dushanbe), Moscow: Donish, 1989, vol. 11, pp. 52–60.

  41. Kuzmin, Yu.O., Sovremennaya geodinamika i otsenka geodinamicheskogo riska pri nedropol’zovanii (Recent Geodynamics and Geodynamic Risk Assessment in Natural Resources Management), Moscow: AEN, 1999.

  42. Kuzmin, Yu.O., Recent anomaly of soil geodynamics induced by small natural and anthropogenic impacts, Gorn. Inf.-Anal. Byull., 2002, no. 9, pp. 48–54.

  43. Kuzmin, Yu.O., Deformation autowaves in fault zones, Izv., Phys. Solid Earth, 2012, vol. 48, no. 1, pp. 1–16.

    Article  MathSciNet  Google Scholar 

  44. Kuzmin, Yu.O., Recent geodynamics of fault zones: Real time fault formation, Geodyn. Tectonophys., 2014, vol. 5, no. 2, pp. 401–443.

    Article  Google Scholar 

  45. Kuzmin, Yu.O., Recent geodynamics of a fault system, Izv., Phys. Solid Earth, 2015, vol. 51, no. 4, pp. 480–485.

    Article  Google Scholar 

  46. Kuzmin, Yu.O., Recent geodynamics of dangerous faults, Izv., Phys. Solid Earth, 2016, vol. 52, no. 5, pp. 709–722.

    Article  Google Scholar 

  47. Kuzmin, Yu.O., Recent geodynamics of tensile faults, Izv., Phys. Solid Earth, 2018, vol. 54, no. 6, pp. 886–903.

    Article  Google Scholar 

  48. Kuzmin, Yu.O., Induced deformations of fault zones, Izv., Phys. Solid Earth, 2019, vol. 55, no. 5, pp. 753–765.

    Article  Google Scholar 

  49. Kuzmin, Yu.O., Recent geodynamics and slow deformation waves, Izv., Phys. Solid Earth, 2020, vol. 56, no. 4, pp. 595–603.

    Article  Google Scholar 

  50. Kuzmin, Yu.O., Geodynamical evolution of the Earth’s crust of Central Asia and recent geodynamics of the Kopet Dag region, Turkmenistan, Izv., Phys. Solid Earth, 2021a, vol. 57, no. 1, pp. 131–139.

    Article  Google Scholar 

  51. Kuzmin, Yu.O., Deformation consequences of the development of oil and gas field, Izv., Atmos. Ocean. Phys., 2021b, vol. 57, no. 11, pp. 1479–1497. https://doi.org/10.1134/S0001433821110062

    Article  Google Scholar 

  52. Kuzmin, Yu.O., Recent volumetric deformations of fault zones, Izv., Phys. Solid Earth, 2022, vol. 58, no. 4, pp. 445–458. https://doi.org/10.1134/S1069351322040061

    Article  Google Scholar 

  53. Kuzmin, Yu.O., Physical foundations of recent geodynamics, Izv., Atmos. Ocean. Phys., 2023, vol. 59, no. 8, pp. 857–911.

    Article  Google Scholar 

  54. Kuzmin, Yu.O. and Churikov, V.A., Anomalous strain generation mechanism before the March 2, 1992, Kamchatka earthquake, Volcanol. Seismol., 1999, vol. 20, pp. 641–656.

    Google Scholar 

  55. Kuzmin, D.K., Kuzmin, Yu.O., and Zhukov, V.S., Assessment of subsides of the Chayandinsky oil and gas field considering changes in petrophysical parameters of reservoir, Eurasian Min., 2021, no. 2, pp. 23–34.

  56. Lykov, A.V. and Berkovskii, B.M., Konvektsiya i teplovye volny (Convection and Heat Waves), Moscow: Energiya, 1974.

  57. Mandl, G., Rock Joints: The Mechanical Genesis, Berlin–Heidelberg: Springer, 2005.

    Google Scholar 

  58. Maysel, V.M., A generalization of the Betti–Maxwell theorem to the case of thermal stresses and some of its applications, Dokl. Acad. Nauk. USSR, 1941, vol. 30, pp. 115–118.

    Google Scholar 

  59. Mindlin, R.D., Force at a point in the interior of a semi-infinite solid, Physics, 1936, no. 7, pp. 195–202.

  60. Mindlin, R.D. and Cheng, D.H., Nuclei of strain in the semi-infinite solid, J. Appl. Phys., 1950, vol. 21, pp. 926–933.

    Article  ADS  MathSciNet  Google Scholar 

  61. Mironov, V.S., Kurs gravirazvedki (A Course of Gravity Exploration), Leningrad: Nedra, 1972.

  62. Mishchenko, E.F., Sadovnichii, V.A., Kolesov, A.Yu., and Rozov, N.Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei (Autowave Processes in Nonlinear Media with Diffusion), Moscow: Fizmatlit, 2010.

  63. Molodenskii, S.M., Prilivy, nutatsiya i vnutrennee stroenie Zemli (Tides, Nutation, and the Internal Structure of the Earth), Moscow: Nauka, 1984.

  64. Mukhamediev, Sh.A., Grachev, A.F., and Yunga, S.L., Nonstationary dynamic control of seismic activity of platform regions by mid-ocean ridges, Phys. Solid Earth, 2008, vol. 44, no. 1, pp. 9–17.

    Article  Google Scholar 

  65. Mura, T., Micromechanics of Defects in Solids, Norwell: Kluwer Academic, 1987.

    Book  Google Scholar 

  66. Nesmeyanov, S.A., Inzhenernaya Geotektonika (Engineering Geotectonics), Moscow: Nauka, 2004.

  67. Nikolaevskii, V.N., Mechanics of geomaterials and earthquakes, in Itogi nauki i tekhniki. Mekhanika deformiruemogo tverdogo tela (Scientific and Technological Results. Mechanics of Deformed Solid Body), Moscow: VINITI, 1983, vol. 15, pp. 149–230.

  68. Nikolaevskii, V.N. and Sharov, V.I., Faults and rheological layering of the Earth’s crust, Fiz. Zemli, 1985, no. 1, pp. 16–26.

  69. Nikonov, A.A., Active faults: Definition and problems of identification, Geoekologiya, 1995, no. 4, pp. 16–27.

  70. Nowacki, W., Thermoelasticity, Oxford: Pergamon, 1986.

    Google Scholar 

  71. Okada, Y., Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 1985, vol. 75, pp. 1135–1154.

    Article  Google Scholar 

  72. Okada, Y., Internal deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 1992, vol. 82, pp. 1018–1040.

    Article  Google Scholar 

  73. Peacock, D.C.P., Nixon, C.W., Rotevatn, A., Sanderson, D.J., and Zuluaga, L.F., Glossary of fault and other fracture networks, J. Struct. Geol., 2016, vol. 92, pp. 12–29. https://doi.org/10.1016/j.jsg.2016.09.008

    Article  ADS  Google Scholar 

  74. Saberi, E., Yassaghi, A., and Djamour, Y., Application of geodetic leveling data on recent fault activity in Central Alborz, Iran, Geophys. J. Int., 2017, vol. 211, pp. 773–787.

    Article  Google Scholar 

  75. Scholz, C.H., The Mechanics of Earthquakes and Faulting, Cambridge: Cambridge Univ. Press, 2019.

    Book  Google Scholar 

  76. Segall, P., Stress and subsidence resulting from subsurface fluid withdrawal in the epicentral region of the 1983 Coalinga earthquake, J. Geophys. Res., 1985, vol. 90, pp. 6801–6816.

    Article  ADS  Google Scholar 

  77. Segall, P., Earthquake and Volcano Deformation, Princeton: Princeton Univ. Press, 2010.

    Book  Google Scholar 

  78. Seminskii, K.Zh., Vnutrennyaya struktura kontinental’nykh razlomnykh zon: Tektonofizicheskii aspekt (Internal Structure of Continental Fault Zones: Tectonophysical Aspect), Novosibirsk: SO RAN, filial Geo, 2003.

  79. Sezava, K., The tilting of the surface of a semi-infinite solid due to internal nuclei of strain, Bull. Earth Res. Inst. Tokyo Univ., 1929, vol. 7, no. 1, pp. 1–14.

    Google Scholar 

  80. Sherman, S.I., Fizicheskie zakonomernosti razvitiya razlomov zemnoi kory (Physical Regularities of the Development of Earth Crust Faults), Novosibirsk: Nauka, 1977.

  81. Sherman, S.I., Bornyakov, S.A., and Buddo, V.Yu., Oblasti dinamicheskogo vliyaniya razlomov: Rezul’taty modelirovaniya (Regions of Dynamic Influence of Faults: Modeling Results), Novosibirsk: Nauka, 1983.

  82. Sidorov, V.A. and Kuz’min, Yu.O., Spatial and temporal characteristics of current dynamics of the geophysical environment of seismically active and aseismic areas, in Diskretnye svoistva geofizicheskoi sredy (Discrete Properties of Geophysical Environment), Moscow: Nauka, 1989, pp. 33–46.

  83. Singh, S.J., Kumar, A., Rani, S., and Singh, M., Deformation of a uniform half-space due to a long inclined tensile fault, Geophys. J. Int., 2002, vol. 148, pp. 687–691.

    Article  ADS  Google Scholar 

  84. Sokolnikoff, S., Mathematical Theory of Elasticity, New York: McGraw-Hill, 1956.

    Google Scholar 

  85. Soltanzadeh, H., Hawkes, C.D., and Sharma, J.S., Poroelastic model for production and injection-induced stresses in reservoirs with elastic properties different from the surrounding rock, Int. J. Geomech., 2007, no. 7, pp. 353–361.

  86. Strange, W.E., The impact refraction correction on leveling interpretations in Southern California, J. Geophys. Res., 1981, vol. 86, no. B4, pp. 2809–2824.

    Article  ADS  Google Scholar 

  87. The Scientific Papers of James Clerk Maxwell, Niven, W.D., Ed., 2 vols., New York: Dover, 1890.

    Google Scholar 

  88. Tsurkis, I.L. and Kuzmin, Yu.O., Stress state of an elastic plane with one or more inclusions of arbitrary shape: The case of identical shear moduli, Mech. Solids, 2022, vol. 57, no. 1, pp.34–48.

    Article  ADS  Google Scholar 

  89. Turcotte, D.L. and Shubert, G., Geodynamics, Cambridge: Cambridge Univ. Press, 2002.

    Book  Google Scholar 

  90. Vasil’ev V.A., Romanovskii Yu.M., Yakhno V.G., Avtovolnovye protsessy (Autowave Processes), Moscow: Nauka, 1987.

  91. Verma, H., Swaroop, R., and Kumar, V., Deformation of poroelastic half-space due to tensile dislocation, Int. J. Eng. Sci. Res. Technol., 2017, vol. 6, no. 12, pp. 115–124.

    Google Scholar 

  92. Viktorova, E.V., Izyumov, S.F., Kuz’min, Yu.O., and Popov, V.N., Geodynamic monitoring in oil and gas development fields, Gorn. Inf.-Anal. Byull., 2004, no. 12, pp. 46–54.

  93. Wang, H.F., Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrology, Princeton: Princeton Univ. Press, 2000.

    Google Scholar 

  94. Yang, X.M. and Davis, P.M., Deformation due to a rectangular tensile crack in an elastic half-space, Bull. Seismol. Soc. Am., 1986, vol. 76, pp. 865–881.

    Article  Google Scholar 

  95. Zhukov, V.S. and Kuz’min, Yu.O., Experimental assessment of the compressibility coefficients of fractures and intergranular pores of an oil and gas reservoir, Zap. Gorn. Inst., 2021, vol. 251, pp. 658–666.

    Google Scholar 

  96. Zimmerman, R., Compressibility of Sandstones, Amsterdam: Elsevier, 1991.

    Google Scholar 

Download references

Funding

This work was carried out as part of the State Task of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. O. Kuzmin.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, Y.O. Recent Geodynamics of Induced Faults. Izv. Atmos. Ocean. Phys. 59, 1515–1577 (2023). https://doi.org/10.1134/S0001433823100055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823100055

Keywords:

Navigation