Skip to main content
Log in

Dielectric Model of the Upper Organic Layer of Forest Soils for a Frequency of 435 MHz

  • PHYSICAL BASES AND METHODS OF STUDYING THE EARTH FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A dielectric model based on the refractive dielectric model of the mixture of thawed and frozen forest organic soils in the root zone for a frequency of 435 MHz has been developed. The model is created on the basis of dielectric measurements of four soils whose organic matter content varies in the range from 15 to 31%. The dielectric measurements are carried out in the range of the gravimetric moisture from 0 to 0.6 g/g and temperature range from –30 to 25°C. The coefficient of determination (R2) between values calculated by the model and measured values of the real (ε') and imaginary (ε'') parts of complex dielectric permittivity is 0.97. The normalized root-mean-square error is 16 and 21% for the real and imaginary parts of the complex dielectric permittivity, respectively. This dielectric model may be applied in remote sensing algorithms when retrieving the value of forest soil moisture in the root zone from radar and radiometric data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Agrokhimicheskie metody issledovaniya pochv (Agrochemical Methods in Soil Research), Sokolov, A.V., Ed., Moscow: Nauka, 1975.

    Google Scholar 

  2. Alemohammad, S.H., Konings, A.G., Jagdhuber, T., Moghaddam, M., and Entekhabi, D., Characterization of vegetation and soil scattering mechanisms across different biomes using P-band SAR polarimetry, Remote Sens. Environ., 2018, vol. 209, pp. 107–117. https://doi.org/10.1016/j.rse.2018.02.032

    Article  Google Scholar 

  3. Belyaeva, T.A., Bobrov, P.P., and Kondrat’eva, O.V., Changes in the dielectric properties of bound water in soil with an increase in its amount, Vestn. SibGAU, 2013, no. 5, pp. 92–95.

  4. Bircher, S., Demontoux, F., Zakharova, E, Drusch, M., Wigneron, J.-P., and Kerr, Y.H., L-band relative permittivity of organic soil surface layers: A new dataset of resonant cavity measurements and model evaluation, Remote Sens., 2016, vol. 8, no. 12, p. 1024. https://doi.org/10.3390/rs8121024

    Article  Google Scholar 

  5. Bobrov, P.P., Spectroscopic model of soil dielectric permittivity using standardized agrophysical indicators, Issled. Zemli Kosmosa, 2008, no. 1, pp. 15–23.

  6. Bobrov, P.P., Kondrat’eva, O.V., and Mustakova, M.M., Influence of organic matter content in soil on the dielectric permittivity in the frequency range 10–8.5 GHz, Vestn. SibGAU, 2013, no. 5, pp. 95–97.

  7. Bobrov, P.P., Belyaeva, T.A., Kroshka, E.S., and Rodionova, O.V., On parameters of the dielectric soil model used in the SMOS algorithm, Tekh. Radiosvyazi, 2021, no. 1, pp. 95–102. https://doi.org/10.33286/2075-8693-2021-48-95-102

  8. Bobrov, P.P., Belyaeva, T.A., Kroshka, E.S., and Rodionova, O.V., The effect of dielectric relaxation processes on the complex dielectric permittivity of soils at frequencies from 10 kHz to 8 GHz. Part I: Experimental, IEEE Trans. Geosci. Remote Sens., 2022, vol. 60, pp. 1–9. https://doi.org/10.1109/TGRS.2022.3180727

    Article  Google Scholar 

  9. Boyarskii, D.A. and Tikhonov, V.V., Model of the effective permittivity of wet and frozen soils in the microwave range, Radiotekh. Elektron., 1995, vol. 40, no. 6, pp. 914–917.

    Google Scholar 

  10. Boyarskii, D.A. and Tikhonov, V.V., Effect of bound water on the dielectric permittivity of wet and frozen soils, Preprint of Space Research Institute, Russ. Acad. Sci., Moscow, 2003.

  11. Carreiras, J.M.B., Quegan, S., Le Toan, T., Ho Tong Minh, D., Saatchi, S.S., and Carvalhais, N. Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions, Remote Sens. Environ., 2017, vol. 196, pp. 154–162. https://doi.org/10.1016/j.rse.2017.05.003

    Article  Google Scholar 

  12. Chudinova, S.M., Dielectric characteristics of soils and categories of soil water, Eurasian Soil Sci., 2009, vol. 42, pp. 405–414. https://doi.org/10.1134/S1064229309040073

    Article  Google Scholar 

  13. Dobson, M., Ulaby, F., Hallikainen, M., and El-Rayes, M., Microwave dielectric behavior of wet soil. Part II: Dielectric mixing models, IEEE Trans. Geosci. Remote Sens., 1985, vol. GE-23, no. 1, pp. 35–46. https://doi.org/10.1109/TGRS.1985.289498

    Article  Google Scholar 

  14. Entekhabi, D., Njoku, E.G., O’Neill, P.E., Kellogg, K.H., Crow, W.T., Edelstein, W.N., Entin, J.K., Goodman, S.D., Jackson, T.J., Johnson, J., Kimball, J., Piepmeier, J.R., Koster, R.D., Martin, N., McDonald, K.C., et al., The Soil Moisture Active Passive (SMAP) mission, Proc. IEEE, 2010, vol. 98, no. 5, pp. 704–716. https://doi.org/10.1109/JPROC.2010.2043918

    Article  Google Scholar 

  15. Escorihuela, M.J., Chanzy, A., Wigneron, J.P., and Kerr, Y.H., Effective soil moisture sampling depth of L-band radiometry: A case study, Remote Sens. Environ., 2010, vol. 114, no. 5, pp. 995–1001. https://doi.org/10.1016/j.rse.2009.12.011

    Article  Google Scholar 

  16. Fomin, S.V. and Muzalevskiy, K., Dielectric model for thawed mineral soils at a frequency of 435 MHz, IEEE Geosci. Remote Sens. Lett., 2021, vol. 18, no. 2, pp. 222–225. https://doi.org/10.1109/LGRS.2020.2972559

    Article  Google Scholar 

  17. Garrison, J., Lin, Y.-C., Nold, B., Piepmeier, J.R., Vega, M.A., and Fritts, M., Du Toit, C.F., Knuble, J. Remote sensing of soil moisture using P-band signals of opportunity (SoOp): Initial results, in 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, 2017, pp. 4158–4161. https://doi.org/10.1109/IGARSS.2017.8127917

  18. Grant, J.P., Van de Griend, A.A., Wigneron, J.-P., Saleh, K., Panciera, R., and Walker, J.P., Influence of forest cover fraction on L-band soil moisture retrievals from heterogeneous pixels using multi-angular observations, Remote Sens. Environ., 2010, vol. 114, no. 5, pp. 1026–1037. https://doi.org/10.1016/j.rse.2009.12.016

    Article  Google Scholar 

  19. Jagdhuber, T., Hajnsek, I., Sauer, S., Papathanassiou, K.P., and Bronstert, A., Soil moisture retrieval under forest using polarimetric decomposition techniques at P-band, in 9th European Conference on Synthetic Aperture Radar, 2012, pp. 709–712.

  20. Jin, M., Zheng, X., Jiang, T., Li, X., Li, X-J., and Zhao, K., Evaluation and improvement of SMOS and SMAP soil moisture products for soils with high organic matter over a forested area in Northeast China, Remote Sens., 2017, vol. 9, no. 4, p. 387. https://doi.org/10.3390/rs9040387

    Article  Google Scholar 

  21. Kerr, Y.H., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M.-J., Font, J., Reul, N., Gruhier, C., Juglea, S.E., Drinkwater, M.R., Hahne, A., Martin-Neira, M., and Mecklenburg, S., The SMOS mission: New tool for monitoring key elements of the global water cycle, Proc. IEEE, 2010, vol. 98, no. 5, pp. 666–687. https://doi.org/10.1109/JPROC.2010.2043032

    Article  Google Scholar 

  22. Kochetkova, T.D., Temperature dependence of dielectric permittivity of peat at microwave frequencies, in 8-ya Mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Aktual’nye problemy radiofiziki” (Proceedings of the 8th International Scientific and Practical Conference “Current Problems of Radiophysics”), 2019, pp. 196–199.

  23. Komarov, A.S. and Mironov, V.L., Mikrovolnovoye zondirovaniye pochv (Microwave Sounding of Soils), Novosibirsk: SO RAN, 2000.

  24. Liebmann, P., Wordell-Dietrich, P., Kalbitz, K., Mikutta, R., Kalks, F., Don, A., Woche, S.K., Dsilva, L.R., and Guggenberger, G., Relevance of aboveground litter for soil organic matter formation: A soil profile perspective, Biogeosciences, 2020, vol. 17, pp. 3099–3113. https://doi.org/10.5194/bg-17-3099-2020

    Article  Google Scholar 

  25. Liu, J., Zhao, S., Jiang, L., Chai, L., and Wu, F., The influence of organic matter on soil dielectric constant at microwave frequencies (0.5–40 GHz), in IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2013, pp. 13–16. https://doi.org/10.1109/IGARSS.2013.6721080

  26. Loewer, M., Igel, J., Minnich, C., and Wagner, N., Electrical and dielectric properties of soils in the MHz to GHz frequency range, in Proceedings of the 11th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances (ISEMA), 2016, pp. 247–254.

  27. Mandrygina, V.N., Dielectric permittivity of soils with different humus content and the effect of hydrophobic and hydrophilic pollutants on it, Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Omsk Pedagogical University, 2004.

  28. Mironov, V.L. and Savin, I.V., Spectroscopic multirelaxation dielectric model of thawed and frozen Arctic soils considering the dependence on temperature and organic matter content, Izv., Atmos. Ocean. Phys., vol. 55, 2019, no. 9, pp. 986–995. https://doi.org/10.1134/S0001433819090305

  29. Mironov, V.L., Komarov, S.A., Rychkova, N.V., and Kleshchenko, V.N., Study of dielectric properties of wet soils in the microwave range, Issled. Zemli Kosmosa, 1994, no. 4, pp. 18–24.

  30. Mironov, V.L., Bobrov, P.P., Bobrov, A.P., Mandrygina, V.N., and Stasuk, V.D., Microwave dielectric spectroscopy of moist soils for a forest-tundra region, in IEEE International Geoscience and Remote Sensing Symposium, 2005, pp. 4485–4488. https://doi.org/10.1109/IGARSS.2005.1525917.

  31. Mironov, V.L., De Roo, R.D., and Savin, I.V., Temperature-dependable microwave dielectric model for an Arctic soil, IEEE Trans. Geosci. Remote Sens., 2010, vol. 48, no. 6, pp. 2544–2556. https://doi.org/10.1109/TGRS.2010.2040034

    Article  Google Scholar 

  32. Mironov, V.L., Bobrov, P.P., and Fomin, S.V., Multirelaxation generalized refractive mixing dielectric model of moist soils, IEEE Geosci. Remote Sens. Lett., 2013a, vol. 10, no. 3, pp. 603–606. https://doi.org/10.1109/LGRS.2012.2215574

    Article  Google Scholar 

  33. Mironov, V.L., Molostov, I.P., Lukin, Y.I., and Karavaisky, A.Y., Method of retrieving permittivity from S12 element of the waveguide scattering matrix, in 2013 International Siberian Conference on Control and Communications (SIBCON), IEEE, 2013b, pp. 1–3. https://doi.org/10.1109/SIBCON.2013.6693609.

  34. Mironov, V.L., Karavayskiy, A.Y., Lukin, Y.I., and Molostov, I.P., A dielectric model of thawed and frozen Arctic soils considering frequency, temperature, texture and dry density, Int. J. Remote Sens., 2020, vol. 41, no. 10, pp. 3845–3865. https://doi.org/10.1080/01431161.2019.1708506

    Article  Google Scholar 

  35. Monerris, A., Vall-llossera, M., Camps, A., Sabia, R., Villarino, R., Cardona, M., Alvarez, E., and Sosa, S., Soil moisture retrieval using L-band radiometry: Dependence on soil type and moisture profiles, in 2006 MicriRad, IEEE, 2006, pp. 171–175. https://doi.org/10.1109/MICRAD.2006.1677083

  36. Muzalevskii, K.V., The potential of remote sensing of soil moisture profile based on backscattering polarimetric observations in P- and C-bands, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2019, vol. 16, no. 5, pp. 203–216.

    Article  Google Scholar 

  37. Nagarajan, K., Judge, J., Monsivais-Huertero, A., and Graham, W.D., Impact of assimilating passive microwave observations on root-zone soil moisture under dynamic vegetation conditions, IEEE Trans. Geosci. Remote Sens., 2012, vol. 50, no. 11, pp. 4279–4291. https://doi.org/10.1109/TGRS.2012.2191154

    Article  Google Scholar 

  38. Owe, M. and Van de Friend, A., Comparison of soil moisture penetration depths for several bare soils at two microwave frequencies and implications for remote sensing, Water Resour. Res., 1998, vol. 34, no. 9, pp. 2319–2327.

    Article  Google Scholar 

  39. Pan, M., Sahoo, A.K., Wood, E.F., Al Bitar, A., Leroux, D., and Kerr, Y.H., An initial assessment of SMOS derived soil moisture over the continental United States, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2012, vol. 5, no. 5, pp. 1448–1457. https://doi.org/10.1109/JSTARS.2012.2194477

    Article  Google Scholar 

  40. Pan, M., Cai, X., Chaney, N.W., Entekhabi, D., and Wood, E.F., An initial assessment of SMAP soil moisture retrievals using high-resolution model simulations and in situ observations, Geophys. Res. Lett., 2016, vol. 43, no. 18, pp. 9662–9668. https://doi.org/10.1002/2016GL069964

    Article  Google Scholar 

  41. Park, C.-H., Behrendt, A., LeDrew, E., and Wulfmeyer, V., New approach for calculating the effective dielectric constant of the moist soil for microwaves, Remote Sens., 2017, vol. 9, p. 732. https://doi.org/10.3390/rs9070732

    Article  Google Scholar 

  42. Park, C.-H., Montzka, C., Jagdhuber, T., Jonard, F., De Lannoy, G., Hong, J., Jackson, T.J., and Wulfmeyer, V., A dielectric mixing model accounting for soil organic matter, Vadose Zone J., 2019, vol. 18, p. 190036. https://doi.org/10.2136/vzj2019.04.0036

    Article  Google Scholar 

  43. Patil, C.B. and Chaudhari, P.R., Dielectric constant and emissivity of forest soil samples at microwave frequency, Int. J. Sci. Res. Phys. Appl. Sci., 2018, vol. 6, no. 4, pp. 44–46. https://doi.org/10.26438/ijsrpas/v6i4.4446

    Article  Google Scholar 

  44. Peplinski, N.R., Ulaby, F.T., and Dobson, M.C., Dielectric properties of soils in the 0.3–1.3 GHz range, IEEE Trans. Geosci. Remote Sens., 1995, vol. 33, no. 3, pp. 803–807. https://doi.org/10.1109/36.387598

    Article  Google Scholar 

  45. Reigber, A., Jager, M., Pinheiro, M., Scheiber, R., Prats, P., Fischer, J., Horn, R., and Nottensteiner, A., Performance of the P-band subsystem and the X-band interferometer of the F-SAR airborne SAR instrument, in 2012 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2012, pp. 5037–5040. https://doi.org/10.1109/IGARSS.2012.6352479.

  46. Repin, A.V., Methods for measuring the dielectric permittivity of various types of soil moisture and oil-bearing rocks, Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Omsk State Pedagogical University, 2010.

  47. Sadeghi, M., Tabatabaeenejad, A., Tuller, M., Moghaddam, M., and Jones, S., Advancing NASA’s AirMOSS P-band radar root zone soil moisture retrieval algorithm via incorporation of Richards’ equation, Remote Sens., 2016, vol. 9, no. 1, p. 17. https://doi.org/10.3390/rs9010017

    Article  Google Scholar 

  48. Savin, I.V., Muzalevskiy, K.V., and Mironov, V.L., A dielectric model of thawed and frozen Arctic organic soils at 435 MHz, Remote Sens. Lett., 2022, vol. 13, no. 5, pp. 452–459. https://doi.org/10.1080/2150704X.2022.2041761

    Article  Google Scholar 

  49. Shen, X., Walker, J.P., Ye, N., Wu, X., Boopathi, N., Yeo, I.-Y., Zhang, L., and Zhu, L., Soil moisture retrieval depth of P- and L-band radiometry: Predictions and observations, IEEE Trans. Geosci. Remote Sens., 2021, vol. 59, no. 8, pp. 6814–6822. https://doi.org/10.1109/TGRS.2020.3026384

    Article  Google Scholar 

  50. Shukla, J. and Mintz, Y., Influence of land-surface evapotranspiration on the Earth’s climate, Science, 1982, vol. 215, no. 4529, pp. 1498–1501. https://doi.org/10.1126/science.215.4539.1498

    Article  Google Scholar 

  51. Shutko, A.M., SVCh-radiometriya vodnoi poverkhnosti i pochvogruntov (Microwave Radiometry of Water Surface and Soils), Nauka, 1986.

  52. Szypłowska, A., Lewandowski, A., Yagihara, S., Saito, H., Furuhata, K., Szerement, J., Kafarski, M., Wilczek, A., Majcher, J., Woszczyk, A., and Skierucha, W., Dielectric models for moisture determination of soils with variable organic matter content, Geoderma, 2021, vol. 401, p. 115288. https://doi.org/10.1016/j.geoderma.2021.115288

    Article  Google Scholar 

  53. Tabatabaeenejad, A., Burgin, M., Xueyang, Duan., and Moghaddam, M., P-band radar retrieval of subsurface soil moisture profile as a second-order polynomial: First AirMOSS results, IEEE Trans. Geosci. Remote Sens., 2015, vol. 53, no. 2, pp. 645–658. https://doi.org/10.1109/TGRS.2014.2326839

    Article  Google Scholar 

  54. Wang, J.R. and Schmugge, T.J., An empirical model for the complex dielectric permittivity of soils as a function of water content, IEEE Trans. Geosci. Remote Sens., 1980, vol. GE-18, no. 4, pp. 288–295. https://doi.org/10.1109/TGRS.1980.350304

    Article  Google Scholar 

  55. Ye, N., Walker, J.P., Yeo, I.-Y., Jackson, T.J., Kerr, Y., Kim, E., Mcgrath, A., Popstefanija, I., Goodberlet, M., and Hills, J., Toward P-band passive microwave sensing of soil moisture, IEEE Geosci. Remote Sens. Lett., 2020, vol. 18, no. 3, pp. 504–508. https://doi.org/10.1109/LGRS.2020.2976204

    Article  Google Scholar 

  56. Zhang, L., Zhao, T., Jiang, L., and Zhao, S., Estimate of phase transition water content in freeze-thaw process using microwave radiometer, IEEE Trans. Geosci. Remote Sens., 2010, vol. 48, no. 12, pp. 4248–4255. https://doi.org/10.1109/TGRS.2010.2051158

    Article  Google Scholar 

  57. Zhang, N., Shi, J., Sun, G., Guo, Z., and Chai, L., Assessment of boreal forest biomass using L-band radiometer SMOS data, in 2011 IEEE International Geoscience and Remote Sensing Symposium, 2011, pp. 1946–1949. https://doi.org/10.1109/IGARSS.2011.6049507

Download references

ACKNOWLEDGMENTS

We are grateful to Cand. Sci. (Phys.–Math.) K.V. Muzalevskii, Head of the Laboratory of Remote Sensing Radiophysics, for supporting this work, as well as to I.V. Savin for selecting the studied soil samples.

Funding

The study was performed within the framework of the state assignment of the Ministry of Science and Higher Education of Russia, project no. 0287-2021-0034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Karavaiskii.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’ski

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karavaiskii, A.Y., Lukin, Y.I. Dielectric Model of the Upper Organic Layer of Forest Soils for a Frequency of 435 MHz. Izv. Atmos. Ocean. Phys. 59, 1208–1219 (2023). https://doi.org/10.1134/S0001433823090104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823090104

Keywords:

Navigation