Skip to main content
Log in

Structure of the Earth’s Crust Based on the Gravity Data of the GOCE Satellite Mission and Spatial Position of Polymetallic Deposits in the Frame of the Siberian and East European Platforms

  • USE OF SPACE INFORMATION ABOUT THE EARTH GEOPHYSICAL AND GEOLOGICAL RESEARCH FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Results of modern studies of the earth’s crust based on the gravitational data of the GOCE satellite have been used for the first time in a comparative metallogenic analysis of the geodynamic settings of the formation of polymetallic deposits in the folded frame of the Siberian and East European platforms. It is shown that deposits of the sedimentary exhalative deposits (SEDEX) type are more often located in the earth’s crust with the dominating development of the lower “basaltic” layer. Pyrite copper and lead–zinc volcanogenic massive sulfide (VMS) deposits, as well as some manifestations of the SEDEX type, occur in supra-subduction island-arc and accretionary settings in the crust with the dominating development of the middle “granitic” layer. Pb-Zn ores of the Mississippi Valley type (MVT) are localized in deep pericratonic sedimentary oil and gas basins on the shelf and continental slope, with no spatial relationship to the stratification of the earth’s crust. The Ag polymetallic mineralization of Taimyr and the Western Verkhoyansk region are confined to deep pericratonic rift troughs on the passive continental margin. They have a similar ore-bearing environment and can be combined into a single silver polymetallic Taimyr–Western Verkhoyansk belt. The results confirm the prospects of Pb-Zn deposits in Central and Eastern Taimyr and also in the Saurey ore region (Polar Urals), indicating the need for their further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Ariskin, A.A., Kostitsyn, Yu.A., Konnikov, E.G., et al., Geochronology of the Dovyren intrusive complex, northwestern Baikal area, Russia, in the Neoproterozoic, Geochem. Int., 2013, no. 11, pp. 859–875.

  2. Artemieva, I.M. and Meissner, R., Crustal thickness controlled by plate tectonics: A review of crust-mantle interaction processes illustrated by European examples, Tectonophysics, 2012, vol. 519, pp. 3–34.

    Google Scholar 

  3. Artemieva, I.M. and Shulgin, A., Making and altering the crust: a global perspective on crustal structure and evolution, Earth Planet. Sci. Lett., 2019, vol. 512, pp. 8–16.

    Article  Google Scholar 

  4. Baluev, A.S., Continental rifting of the north of the East European platform in the Neogaea: Geology, development history, comparative analysis, Doctoral (Geol.–Min.) Dissertation, Moscow: Inst. Geol., Russ. Acad. Sci., 2013.

  5. Baluev, A.S., Kolodyazhnyi, S., Yu., and Terekhov, E.Y., Comparative tectonics of the White Sea paleorift system and other continental rifting systems, Litosfera, 2021, vol. 21, no. 4, pp. 469–490.

    Google Scholar 

  6. Bortnikov, N.S., Volkov, A.V., Galyamov, A.L., Vikent’ev, I.V., Aristov, V.V., Lalomov, A.V., and Murashov, K.Yu., Mineral resources of high-tech metals in Russia: State of the art and outlook, Geol. Ore Deposits, 2016, vol. 58, no. 2, pp. 83–103.

    Article  Google Scholar 

  7. Cammarano, F. and Guerri, M., Global thermal models of the lithosphere, Geophys. J. Int., 2017, vol. 210, pp. 56–72.

    Article  Google Scholar 

  8. Dergachev, A.L. and Eremin, N.I., Proportions of massive-sulfide and strata-bound lead-zinc mineralization during the Earth’s evolution, Moscow Univ. Geol. Bull., 2008, vol. 63, pp. 237–246.

    Article  Google Scholar 

  9. Dymovich, V.A., Vas’kin, A.F., Opalikhina, E.S., Kislyakov, S.G., et al., State geological map of the Russian Federation, Scale 1 : 1000000, Ser. Far East, Sheet O-53 (Nel’kan), Explanatory note, St. Petersburg: VSEGEI, 2012.

  10. Egorov, A.S., Glubinnoe stroenie i geodinamika litosfery Severnoi Evrazii (po rezul’tatam geologo-geofizicheskogo modelirovaniya vdol’ geotraversov Rossii) (Deep structure and geodynamics of the lithosphere of Northern Eurasia (Using the Results of Geological and Geophysical Modeling along Geotraverses of Russia)), St. Petersburg: VSEGEI, 2004.

  11. Egorov, A.S., Features of the deep structure and material composition of geostructures of the Earth’s crust of the continental part of Russia, Zap. Gorn. Inst., 2015, vol. 216, pp. 13–30.

    Google Scholar 

  12. Ernst, R.E. and Hamilton, M.A., 725 Ma U–Pb baddeleyite age for the Dovyren igneous intrusion of southwestern Siberia; reconstruction with the giant 723 Ma Franklin Large Igneous Province (LIP) of northern Laurentia, in Materialy soveshchaniya “Geologiya polyarnykh oblastei Zemli” (Proceedings of the Meeting “Geology of Polar Regions of the Earth”), Moscow, 2009, vol. 2, pp. 330–332.

  13. Galyamov, A.L., Volkov, A.V., and Sidorov, A.A., Distribution and formation of Mississippi Valley-type lead–zinc deposits on the eastern margin of the Siberian Platform (Results of GIS analysis of the global crust model), Dokl. Earth Sci., 2020, vol. 493, no. 1, pp. 504–507.

    Article  Google Scholar 

  14. Galyamov, A.L., Volkov, A.V., and Lobanov, K.V., Application of models of the Earth’s crust-depth structure based on GOCE satellite gravitational data for forecasting and prospecting Pb–Zn deposits in the Arctic zone of Russia, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 12, pp. 1751–1761.

    Article  Google Scholar 

  15. Gamyanin, G.N., Anikina, E.Yu., Bortnikov, N.S., et al., The Prognoz silver–polymetallic deposit, Sakha: Mineralogy, geochemistry, and origin, Geol. Ore Deposits, 1998, vol. 40, no. 5, pp. 391–407.

    Google Scholar 

  16. Golubev, A.I., Ivashchenko, V.I., Trofimov, N.N., and Ruch’ev, A.M., Metallogeny and assessment of Karelian prospects for large complex noble metal deposits, in Geologiya i poleznye iskopaemye Karelii (Geology and Mineral Reserves of Karelia), Petrozavodsk, 2007, vol. 10, pp. 91–116.

    Google Scholar 

  17. Goshko, E.Yu., Efimov, A.S., and Sal’nikov, A.S., The recent structure and the assumed history of formation of the crust in the south-eastern segment of the North Asian craton along Reference Profile 3-DV, Geodyn. Tectonophys., 2014, vol. 5, no. 3, pp. 785–798.

    Article  Google Scholar 

  18. Hacker, B.R., Kelemen, P.B., and Behn, M.D., Continental lower crust, Annu. Rev. Earth Planet. Sci., 2015, vol. 43, no. 1, pp. 167–205. https://doi.org/10.1146/annurev-earth-050212-124117

    Article  Google Scholar 

  19. Houseman, G.A. and Molnar, P., Gravitational (Rayleigh–Taylor) instability of a layer with nonlinear viscosity and convective thinning of continental lithosphere, Geophys. J. Int., 1997, vol. 128, pp. 125–150.

    Article  Google Scholar 

  20. Klyuikov, A.A., A new era in the study of the Earth’s gravitational field, in Nauchnye trudy instituta astronomii RAN (Transactions of the Institute of Astronomy, Russian Academy of Sciences), 2018, vol. 2, pp. 20–25.

  21. Konkin, V.D., Donets, A.I., and Ruchkin, G.V., Mineralogical and geochemical types and regional geological features of stratiform lead–zinc deposits in carbonate strata, Otechestvennaya Geol., 2018, no. 4, pp. 52–63.

  22. Laske, G., Masters, G., Ma, Z., and Pasyanos, M.E., Update on CRUST1.0-A 1-degree global model of Earth’s crust, Geophys. Res. Abstr., 2013, pp. EGU2013-2658.

  23. Leach, D.L., Sangster, D.F., Kelley, K.D., Large, R.R., Garven, G., Allen, C.R., Gutzmer, J., and Walters, S., Sediment-hosted lead-zinc deposits: A global perspective, in Economic Geology: One Hundredth Anniversary Volume, Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P., Eds., Littleton, Colo.: Society of Economic Geologists, 2005, pp. 561–607.

    Google Scholar 

  24. Luchitskaya, M.V., Granitoid magmatism and formation of the continental crust of the northern frame of the Pacific Ocean in the Mesozoic–Cenozoic, Trudy GIN RAN (Transactions of the Institute of Geology, Russian Academy of Sciences), Moscow: GEOS, 2014, vol. 607.

    Google Scholar 

  25. Maksimov, A.V., Bogdanov, Yu.B., Voinova, O.A., Kossovaya O.L., et al., State geological map of the Russian Federation, Scale 1 : 1000000, Ser. The Baltic, Sheet P-35, 36 (Petrozavodsk), Explanatory note, St. Petersburg: VSEGEI, 2015.

  26. Map of undiscovered conventional oil and gas resources of the world, 2012. https://certmapper.cr.usgs.gov/data/ apps/world-energy/?resource=conventional.

  27. Mazukabzov, A.M., Sklyarov, E.V., Donskaya, T.V., and Gladkochub, D.V., Complexes of metamorphic cores of Central Asia and their nature, in Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu) (Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent), Irkutsk: IZK SO RAN, 2011, pp. 134–139.

  28. Mel’nikova, T.M., The Baikal rift as a long-living system, Izv. Irkutsk. Gos. Univ., Ser.: Geoarkheol. Etnol. Antropol., 2012, no. 1, pp. 3–21.

  29. Mo, X.X., Hou, Z.Q., Niu, Y.L., et al., Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in Southern Tibet, Lithos, 2007, vol. 96, pp. 225–242.

    Article  Google Scholar 

  30. Nekrasov, A.I., Reflection of the geodynamic regime of the eastern margin of the Siberian Platform in the features of the formation of the sedimentary prism of the Verkhoyansk complex and the minerageny of the Western Verkhoyansk segment of the Verkhoyansk fold-thrust belt, Otechestvennaya Geol., 2011, no. 1, pp. 101–110.

  31. Nekrasov, A.I., Geology and noble metal minerageny of the Verkhoyansk–Kolyma folded region, Extended Abstract of Doctoral (Geol.–Min.) Dissertation, Moscow, 2017.

  32. Parfenov, L.M. and Kuz’min, M.I., Tektonika, geodinamika i metallogeniya territorii Respubliki Sakha (Yakutiya) (Tectonics, Geodynamics, and Metallogeny of the Territory of the Sakha Republic (Yakutia)), Moscow: Nauka/Interperiodika, 2001.

  33. Parmuzin, N.M., Alekseev, M.A., Vovshina, A.Yu., Vuks, V.Ya., Gavrilova, V.A., Gorbatsevich, N.R., Evdokimova, I.O., Korotetskaya, E.E., Kossovaya, O.L., Kotlyar, G.V., Kuz’min, A.N., Mazurkevich, K.N., Maksimov, A.V., Maulini, R.L., Nikiforova Yu.Yu., et al., State geological map of the Russian Federation, Scale 1 : 1000000, Mezen Ser. (Sheet Q-39 (Nar’yan-Mar)), Explanatory note, St. Petersburg: VSEGEI, 2015.

  34. Pavlenkova, N.I., Kashubin, S.N., and Pavlenkova, G.A., The Earth’s crust of the deep platform basins in the Northern Eurasia and their origin, Izv., Phys. Solid Earth, 2016, vol. 52, no. 5, pp. 770–784.

    Article  Google Scholar 

  35. Pirajno, F., Hydrothermal Processes and Mineral Systems, Springer, 2009.

    Book  Google Scholar 

  36. Proskurnin, V.F., Gavrish, A.V., Mezhubovskii, V.V., Trofimov, V.R., et al., State geological map of the Russian Federation, Scale 1 : 1000000, Ser. Taimyr–Severnaya Zemlya, Sheet S-49 (Khatanga Bay), Explanatory note, St. Petersburg: VSEGEI, 2013.

  37. Puchkov, V.N., Paleogeodinamika Yuzhnogo i Srednego Urala (Paleogeodynamics of Southern and Middle Urals), Ufa: GILEM, 2000.

  38. Puchkov, V.N., Geologiya Urala i Priural’ya (aktual’nye voprosy stratigrafii, tektoniki, geodinamiki i metallogenii) (Topical Issues of Geology of Urals and the Ural Region), Ufa: DizainPoligrafServis, 2010.

  39. Reguzzoni, M. and Sampietro, D., GEMMA: An Earth crustal model based on GOCE satellite data, Int. J. Appl. Earth Obs. Geoinf., 2015, vol. 35, pp. 31–43.

    Google Scholar 

  40. Rybakov, S.I., Golubev, A.I., Slyusarev, V.D., et al., Metallogeniya Karelii (Metallogeny of Karelia), Petrozavodsk: KNTs RAN, 1999.

  41. Samygin, S.G., Features of the structure and geodynamic evolution of Taimyr in the Neoproterozoic, Litosfera, 2018, vol. 18, no. 1, pp. 5–19.

    Google Scholar 

  42. Sovremennaya geodinamika oblastei vnutrikontinental’nogo kollizionnogo goroobrazovaniya (Tsentral’naya Aziya) (Contemporary Geodynamics of Intracontinental Collisional Mountain Formation Areas (Central Asia)), Moscow: Nauchnyi mir, 2005.

  43. Strimzha, T.P., Metasomatoz–kislorod–argillizity (na primere Gorevskogo svintsovo–tsinkovogo mestorozhdeniya, Eniseiskii kryazh) (Metasomatism–Oxygen–Argillicites (Using the Example of the Gorevsky Lead–Zinc deposit, Yenisei Ridge)), Krasnoyarsk: Sib. Fed. Univ., 2017.

  44. Svetov, S.A., Magmaticheskie sistemy zony perekhoda okean–kontinent v arkhee vostochnoi chasti Fennoskandinavskogo shchita (Magmatic Systems of the Ocean–Continent Transition Zone in the Archean of the Eastern Part of the Fennoscandian Shield), Petrozavodsk, 2005.

    Google Scholar 

  45. Tychinskii, A.A., Akul’shina, E.P., and Baulina, M.V., Pribaikal’skii polimetallicheskii rudnyi poyas (Pribaikalsky Polymetallic Ore Belt), Novosibirsk: Nauka, 1984.

  46. Vernikovskii, V.A., Geodinamicheskaya evolyutsiya Taimyrskoi skladchatoi oblasti (Geodynamic Evolution of the Taimyr Folded Area), Dobretsov, N.L., Ed., Novosibirsk: SO RAN, NITs OIGGM, 1996.

  47. Vernikovskii, V.A., Kazanskii, A.Yu., Matushkin, N.Yu., Metelkin, D.V., and Sovetov, Yu.K., The geodynamic evolution of the folded framing and the western margin of the Siberian craton in the Neoproterozoic: Geological, structural, sedimentological, geochronological, and paleomagnetic data, Russ. Geol. Geophys., 2009, vol. 50, no. 4, pp. 380–393.

    Article  Google Scholar 

  48. Vladimirov, A.G., Vladimirov, V.G., Volkova, N.I., Mek-honoshin, A.S., Babin, G.A., Travin, A.V., Kolotilina, T.B., Khromykh, S.V., Yudin, D.S., Karmysheva, I.V., Korneva, I.B., and Mikheev, E.I., The role of plume tectonics and strike-slip deformations of the lithosphere in the evolution of the Early Caledonides of Central Asia, Nauki Zemle Nedropol’zovanie, 2011, vol. 38, no. 1, pp. 105–119.

    Google Scholar 

  49. Volkov, A.V., Galyamov, A.L., Belousov, P.E., and Vol’fson, A.A., Space technologies for metallogenic analysis of the Russian Arctic territory, Arkt.: Ekol. Ekon., 2020, no. 2, pp. 77–85.

  50. Zappettini, E., Rubinstein, N., Crosta, S., and Segal, S., Intracontinental rift-related deposits: A review of key models, Ore Geol. Rev., 2017, vol. 89, pp. 594–608. https://doi.org/10.1016/j.oregeorev.2017.06.019

    Article  Google Scholar 

  51. Zhang, H.F., Temporal and spatial distribution of Mesozoic mafic magmatism in the North China Craton and implications for secular lithospheric evolution, Geol. Soc. London, Spec. Publ., 2007, vol. 280, pp. 35–54.

    Article  Google Scholar 

  52. Zhou, Z., Wen, H., de Fourestier, J., Qin, C., and Liu, L., Sulphur and metal sources of polymetallic vein-type, sedimentary exhalative-type and Mississippi Valley-type Zn–Pb deposits along the southeast margin of the Yangtze Block, Ore Geol. Rev., 2022, vol. 147, p. 104957.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, grant no. 13.1902.21.008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Galyamov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Morozov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galyamov, A.L., Volkov, A.V., Lobanov, K.V. et al. Structure of the Earth’s Crust Based on the Gravity Data of the GOCE Satellite Mission and Spatial Position of Polymetallic Deposits in the Frame of the Siberian and East European Platforms. Izv. Atmos. Ocean. Phys. 59, 1028–1044 (2023). https://doi.org/10.1134/S0001433823090074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823090074

Keywords:

Navigation