Skip to main content
Log in

Retrieval of Cloud Liquid Water Path from MSU-GS Data Onboard Arktika-M 1

  • PHYSICAL BASES AND METHODS OF STUDYING THE EARTH FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This paper presents a method for cloud water path retrieval from daytime MSU-GS measurements onboard the Russian hydrometeorological satellite Arktika-M 1. The technique is based on the physical principles of the interaction of electromagnetic radiation with cloud particles at wavelengths of 0.55 and 4.0 μm. Cloud water path estimates obtained from the MSU-GS radiometer are compared with similar estimates from the AMSU/MHS and AHI radiometer data. Based on the results of the comparison, the required estimates of the cloud water path of drop clouds are within the permissible limits of the measurement error, not exceeding 50 g/m2. At the same time, due to its design features, the MSU-GS radiometer does not allow retrieving the cloud water path of ice clouds with the required accuracy. On average, the cloud water path estimate of ice clouds according to the MSU-GS data is underestimated by 110 g/m2, and the root-mean-square error is 158 g/m2, when compared to the AHI radiometer data. The estimates of the cloud water path are introduced into the geographic information system Arktika-M, which provides access to the Arktika-M 1 data and the results of their thematic processing in a near real time mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Andreev, A.I. and Shamilova, Yu.A., Cloud detection from the Himawari-8 satellite data using a convolutional neural network, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 9, pp. 1162–1170.

    Article  Google Scholar 

  2. Baum, B.A., Heymsfield, A.J., Yang, P., and Bedka, S.T., Bulk scattering models for the remote sensing of ice clouds. Part I: Microphysical data and models, J. Appl. Meteorol. Climatol., 2005a, vol. 44, pp. 1885–1895.

    Article  Google Scholar 

  3. Baum, B.A., Yang, P., Heymsfield, A.J., Platnick, S., King, M.D., Hu, Y-X., and Bedka, S.T., Bulk scattering models for the remote sensing of ice clouds. Part II: Narrowband models, J. Appl. Meteorol. Climatol., 2005b, vol. 44, pp. 1896–1911.

    Article  Google Scholar 

  4. Bennartz, R., Global assessment of marine boundary layer cloud droplet number concentration from satellite, J. Geophys Res: Atmos., 2007, vol. 112, no. D2, p. 16.

    Google Scholar 

  5. Boukabara, S.A., Garrett, K., Chen, W., Iturbide-Sanchez, F., Grassotti, C., Kongoli, C., Chen, R., Liu, Q., Yan, B., Weng, F., Ferraro, R., Kleespies, T.J., and Meng, H., MIRS: An all-weather 1DVAR satellite data assimilation & retrieval system, IEEE Trans. Geosci. Remote Sens., 2011, vol. 49, no. 9, pp. 3249–3272.

    Article  Google Scholar 

  6. Buras, R., Dowling, T., and Emde, C., New secondary-scattering correction in DISORT with increased efficiency for forward scattering, J. Quant. Spectrosc. Radiat. Transfer, 2011, vol. 112, no. 12, pp. 2028–2034.

    Article  Google Scholar 

  7. Filei, A.A., Determination of the cloud phase state using MSU-MR radiometer data onboard Meteor-M no. 2 spacecraft, Opt. Atmos. Okeana, 2019, vol. 32, no. 5, pp. 376–380.

    Google Scholar 

  8. Gasteiger, J., Emde, C., Mayer, B., Buras, R., Buehler, S.A., and Lemke, O., Representative wavelengths absorption parameterization applied to satellite channels and spectral bands, J. Quant. Spectrosc. Radiat. Transfer, 2014, vol. 148, pp. 99–115.

    Article  Google Scholar 

  9. Han, Q., Rossow, W.B., and Lacis, A.A., Near-global survey of effective droplet radii in liquid water clouds using ISCCP data, J. Clim., 1994, vol. 7, pp. 465–497.

    Article  Google Scholar 

  10. Heymsfield, A.J., Matrosov, S., and Baum, B., Ice water path-optical relationships for cirrus and deep stratiform ice cloud layers, J. Appl. Meteorol., 2003, vol. 42, no. 10, pp. 1369–1390.

    Article  Google Scholar 

  11. Hu, Y.X. and Stamnes, K., An accurate parameterization of the radiative properties of water clouds suitable for use in climate models, J. Clim., 1993, vol. 6, pp. 728–742.

    Article  Google Scholar 

  12. Khartov, V.V., Martynov, M.B., Babyshkin, V.E., Moskatin’ev, I.V., and Mit’kin, A.S., New highly elliptical space system ARKTIKA, Vestn. NPO im. S.A. Lavochkina, 2014, no. 3, pp. 104–109.

  13. Matveev, L.T., Kurs obshchei meteorologii. Fizika atmosfery (Course of General Meteorology. Atmospheric Physics), Leningrad: Gidrometeoizdat, 1984.

  14. Mayer, B., Kylling, A., Emde, C., Buras, R., Hamann, U., Gasteiger, J., and Richter, B., LibRadtran User’s Guide, 2017.

    Google Scholar 

  15. Mazin, I.P. and Khrgian, A.H., Oblaka i oblachnaya atmosfera. Spravochnik (Clouds and Cloudy Atmosphere), Leningrad: Gidrometizdat, 1989.

  16. Platnick, S., Vertical photon transport in cloud remote sensing problems, J. Geophys. Res., 2000, vol. 105, no. D18, pp. 22919–22935.

    Article  Google Scholar 

  17. Platnick, S., King, M.D., Ackerman, S.A., Menzel, W.P., Baum, B.A., Riedi, J.C., and Frey, R.A., The MODIS cloud products: Algorithms and examples from Terra, IEEE Trans. Geosci. Remote Sens., 2003, vol. 41, pp. 459–473.

    Article  Google Scholar 

  18. Roebeling, R.A., Feijt, A.J., and Stammes, P., Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17, J. Geophys. Res.: Atmos., 2006, vol. 111, no. D20210.

  19. Walther, A. and Heidinger, A., Implementation of the daytime cloud optical and microphysical properties, Algorithm (DCOMP) in PATMOS-x, J. Appl. Meteorol. Climatol., 2012, vol. 51, no. 7, pp. 1371–1390.

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Filei.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Chubarova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filei, A.A., Shamilova, Y.A. Retrieval of Cloud Liquid Water Path from MSU-GS Data Onboard Arktika-M 1. Izv. Atmos. Ocean. Phys. 59, 1189–1197 (2023). https://doi.org/10.1134/S0001433823090062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823090062

Keywords:

Navigation