Skip to main content
Log in

Assessment of Anomalous Geodynamics before the 2023 Mw 7.8 Earthquake in Turkey by Stacking-InSAR Method

  • USE OF SPACE INFORMATION ABOUT THE EARTH STUDYING CATASTROPHIC NATURAL PROCESSES FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Displacement velocity fields of the block-fault structure are constructed and the main geodynamic processes in the area of the East Anatolian Fault (EAF) are revealed based on the results of the processing of 437 radar interferograms obtained from the Sentinel-1 radar in the period from early 2018 until the beginning of the destructive seismic activity in February 6, 2023 in Turkey by the Stacking-InSAR method. Anomalous block displacements along this fault have been identified; they are timed to the earthquake of January 24, 2020 (Mw = 6.7). Zones of stress–strain state of the main blocks in the period preceding the earthquake have been determined using the cluster analysis of time series of velocity fields. It is shown that the epicenters of the February 2023 earthquakes are located in these zones. A conclusion is made about the necessity of using such a technique to estimate the stress–strain state in order to predict seismic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. ASF Data Search. https://search.asf.alaska.edu/#/. Accessed March 28, 2023.

  2. Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E., A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Trans. Geosci. Remote Sens., 2002, vol. 40, no. 11, pp. 2375–2383. https://doi.org/10.1109/TGRS.2002.803792

    Article  Google Scholar 

  3. Bondur, V.G. and Voronova, O.S., Study of thermal fields before strong earthquakes in Turkey on March 8, 2010 (M = 6.1), and January 24, 2020 (M = 6.7), Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 9, pp. 991–10002. https://doi.org/10.1134/S0001433821090425

    Article  Google Scholar 

  4. Bondur, V.G., Garagash, I.A., Gokhberg, M.B., Lapshin, V.M., Nechaev, Yu.V., Steblov, G.M., and Shalimov, S.L., Geomechanical models and ionospheric variations related to strongest earthquakes and weak influence of atmospheric pressure gradients, Dokl. Earth. Sci., 2007, vol. 414, no. 1, pp. 666–669.

    Article  Google Scholar 

  5. Bondur, V.G., Garagash, I.A., Gokhberg, M.B., Lapshin, V.M., and Nechaev, Yu.V., Connection between variations of the stress-strain state of the Earth’s crust and seismic activity: The example of Southern California, Dokl. Earth. Sci., 2010, vol. 430, no. 3, pp. 147–150.

    Article  Google Scholar 

  6. Bondur, V.G., Garagash, I.A., Gokhberg, M.B., and Rodkin, M.V., The evolution of the stress state in Southern California based on the geomechanical model and current seismicity, Izv., Phys. Solid Earth, 2016a, vol. 52, no. 1, pp. 117–128. https://doi.org/10.1134/S1069351316010043

    Article  Google Scholar 

  7. Bondur, V.G., Garagash, I.A., and Gokhberg, M.B., Large-scale interaction of seismically active tectonic provinces: The example of Southern California, Dokl. Earth Sci., 2016b, vol. 466, no. 2, pp. 183–186. https://doi.org/10.1134/S1028334X16020100

    Article  Google Scholar 

  8. Bondur, V.G., Chimitdorzhiev, T.N., Dmitriev, A.V., and Dagurov, P.N., Methods of radar interferometry and optical satellite image processing to study negative effects on the environment (a case study of the Baikalsk pulp and paper mill), Izv., Atmos. Ocean. Phys., 2021a, vol. 57, no. 12, pp. 1527–1537. https://doi.org/10.1134/S0001433821120045

    Article  Google Scholar 

  9. Bondur, V.G., Chimitdorzhiev, T.N., Tubanov, Ts.A., Dmitriev, A.V., and Dagurov, P.N., Analysis of the block-fault structure dynamics in the area of earthquakes in 2008 and 2020 near southern Lake Baikal by the methods of satellite radiointerferometry, Dokl. Earth Sci., 2021b, vol. 499, no. 2, pp. 648–653. https://doi.org/10.1134/S1028334X21080031

    Article  Google Scholar 

  10. Bondur, V.G., Tsidilina, M.N., Gaponova, E.V., and Voronova, O.S., Combined analysis of anomalous variations in various geophysical fields during preparation of the M5.6 earthquake near Lake Baikal on September 22, 2020, based on satellite data, Izv., Atmos. Ocean. Phys., 2022a, vol. 58, no. 12, pp. 1532–1545. https://doi.org/10.1134/S0001433822120052

    Article  Google Scholar 

  11. Bondur, V.G., Chimitdorzhiev, T.N., Dmitriev, A.V., and Dagurov, P.N., Assessment of the Bureya River landslide reactivation using the persistent scatterer interferometry, Dokl. Earth Sci., 2022b, vol. 502, no. 1, pp. 31–36. https://doi.org/10.1134/S1028334X22020027

    Article  Google Scholar 

  12. Dai, K., Liu, G., Li, Z., Ma, D., Wang, X., Zhang, B., Tang, J., and Li, G., Monitoring highway stability in permafrost regions with X-band temporary scatterers Stacking InSAR, Sensors, 2018, vol. 18, p. 1876. https://doi.org/10.3390/s18061876

    Article  Google Scholar 

  13. FRC RAS Geophysical survey, available at: http://www. ceme.gsras.ru/new/ssd_news.htm. Accessed March 28, 2023.

  14. Feoktistov, A.A., Zakharov, A.I., Gusev, M.A., and Denisov, P.V., Capabilities of the small baseline method analyzed from the SBAS module of the SARSCAPE software package and ASAR/ENVISAT and PALSAR/ALOS SAR data. Part 1. Key points of the method, Zh. Radioelektron., 2015a, no. 9, p. 13. http://jre.cplire.ru/jre/sep15/1/text.pdf.

  15. Feoktistov, A.A., Zakharov, A.I., Gusev, M.A., and Denisov, P.V., Capabilities of the small baseline method analyzed from the SBAS module of the SARSCAPE software package and ASAR/ENVISAT and PALSAR/ALOS SAR data. Part 2. Experimental results, Zh. Radioelektron., 2015b, no. 9, p. 14. http://jre.cplire. ru/jre/sep15/2/text.pdf.

  16. Ferretti, A., Prati, C., and Rocca, F., Permanent scatterers in SAR interferometry, IEEE Trans. Geosci. Remote Sens., 2001, vol. 39, pp. 8–20. https://doi.org/10.1109/36.898661

    Article  Google Scholar 

  17. Filatova, V.M., Nazarov, I.V., and Filatov, A.V., Methods and results of geostatistical processing of radar interferometry data over the Kaliningrad Region, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2021, vol. 18, no. 5, pp. 74–82. https://doi.org/10.21046/2070-7401-2021-18-5-74-82

    Article  Google Scholar 

  18. Hogenson, K., Kristenson, H., Kennedy, J., Johnston, A., Rine, J., Logan, T., Zhu, J., Williams, F., Herrmann, J., Smale, J., and Meyer, F., Hybrid Pluggable Processing Pipeline (HyP3): A cloud-native infrastructure for generic processing of SAR data, 2020. https://doi.org/10.5281/zenodo.6917373

  19. Koyama, C.N., Watanabe, M., Hayashi, M., Ogawa, T., and Shimada, M., Mapping the spatial–temporal variability of tropical forests by ALOS-2 L-band SAR big data analysis, Remote Sens. Environ., 2019, vol. 233, p. 111372. https://doi.org/10.1016/j.rse.2019.111372

    Article  Google Scholar 

  20. M 6.7 earthquake in eastern Turkey, 2020. https://earthquake.usgs.gov/earthquakes/eventpage/us60007ewc/ executive. Accessed March 28, 2023.

  21. Mikhailov, V.O., Nazaryan, A.N., Smirnov, V.B., Kiseleva, E.A., Tikhotskii, S.A., Smol’yaninova, E.I., Timoshkina, E.P., Polyakov, S.A., Diament, M., and Shapiro, N., Joint inversion of the differential satellite interferometry and GPS data: A case study of Altai (Chuia) earthquake of September 27, 2003, Izv., Phys. Solid Earth, 2010, vol. 46, no. 2, pp. 91–103.

    Article  Google Scholar 

  22. EMERCOM of Russia, available at: https://en.mchs.gov.ru/. Accessed March 28, 2023.

  23. Nof, R.N., Baer, G., Eyal, Y., and Novali, F., Current surface displacement along the Carmel Fault system in Israel from InSAR stacking and PSInSAR, Isr. J. Earth Sci., 2008, vol. 57, no. 2, pp. 71–86. https://doi.org/10.1560/IJES.57.2.71

    Article  Google Scholar 

  24. Sandwell, D.T. and Price, E.J., Phase gradient approach to stacking interferograms, J. Geophys. Res.: Solid Earth, 1998, vol. 103, pp. 30183–30204. https://doi.org/10.1029/1998JB900008

    Article  Google Scholar 

  25. Sobolev, G.A. and Ponomarev, A.V., Fizika zemletryasenii i predvestniki (Earthquake Physics and Precursors), Moscow: Nauka, 2003.

  26. Strozzi, T., Wegmuller, U., Werner, C., and Wiesmann, A., Measurement of slow uniform surface displacement with mm/year accuracy, in IGARSS 2000 Proceedings (00CH37120), 2000, vol. 5, pp. 2239–2241. https://doi.org/10.1109/IGARSS.2000.858368

  27. Styron, R. and Pagani, M., The GEM global active faults database, Earthquake Spectra, 2020, vol. 36, pp. 160–180. https://doi.org/10.1177/8755293020944182

    Article  Google Scholar 

  28. Weiss, J.R., Walters, R.J., Morishita, Y., Wright, T.J., Lazecky, M., Wang, H., Hussain, E., Hooper, A.J., Elliott, J.R., Rollins, C., Yu, C., Gonzalez, P.J., Spaans, K., Li, Z., and Parsons, B., High-resolution surface velocities and strain for Anatolia from Sentinel-1 InSAR and GNSS data, Geophys. Res. Lett., 2020, vol. 47, p. e2020GL087376. https://doi.org/10.1029/2020GL087376

  29. Xu, Y., Li, T., Tang, X., Zhang, X., Fan, H., and Wang, Y., Research on the applicability of DInSAR, Stacking-InSAR and SBAS-InSAR for mining region subsidence detection in the Datong coalfield, Remote Sens., 2022, vol. 14, p. 3314. https://doi.org/10.3390/rs14143314

    Article  Google Scholar 

  30. Yi, Y., Xu, X., Xu, G., and Gao, H., Rapid mapping of slow-moving landslides using an automated SAR processing platform (HyP3) and Stacking-InSAR method, Remote Sens., 2023, vol. 15, p. 1611. https://doi.org/10.3390/rs15061611

    Article  Google Scholar 

  31. Zhang, L., Dai, K., Deng, J., Ge, D., Liang, R., Li, W., and Xu, Q., Identifying potential landslides by Stacking-InSAR in Southwestern China and its performance comparison with SBAS-InSAR, Remote Sens., 2021, vol. 13, p. 3662. https://doi.org/10.3390/rs13183662

    Article  Google Scholar 

Download references

Funding

This study was performed as part of State Assignment no. 122011800095-3 for the AEROCOSMOS Institute for Scientific Research of Aerospace Monitoring and 121032500022-8 for the Institute of Physical Material Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Bondur.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondur, V.G., Chimitdorzhiev, T.N. & Dmitriev, A.V. Assessment of Anomalous Geodynamics before the 2023 Mw 7.8 Earthquake in Turkey by Stacking-InSAR Method. Izv. Atmos. Ocean. Phys. 59, 1001–1008 (2023). https://doi.org/10.1134/S0001433823090037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823090037

Keywords:

Navigation